
NOTE: This specification has not been approved and is subject to modification.

DO NOT USE FOR ACQUISITION PURPOSES.

Software Communications Architecture Specification

MSRC-5000SCA
V1.0

May 17, 2000

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium

under Contract No. DAAB15-00-3-0001

Revision Summary
0.1 original draft for industry review and comment
0.2 updated draft for industry review and comment. Changes are extensive, involving format

and content.
0.3 updated draft for industry review and comment. Changes are marked with change bars in

the margins.
0.4 updated draft for industry review and comment. Significant changes:

- previous sec. 3.1.3.3.6 Factory properly recognized as a Core Application Interface and
is now 3.1.3.1.7 ResourceFactory.
- Added material to section 3.2.2.2, Network Applications
- Added material to section 5, Security Architecture Definition

1.0 Formal release for initial validation. Changes made include correction of errors and the
following:
- added figure and table captions; updated figure and table numbers
- moved Use Cases to the SRD
- deleted unused appendix references; renumbered existing appendices
- changed Access to I/O where discussing signal and control to/from system
- expanded and corrected examples of use of SCA in section 2
- changed Application Profile to Software Profile; included references to the Domain
Profile files where used by CF interfaces
- deleted "NAPI" as a unique distinction of networking APIs
- removed requirements on CORBA extensions where products are not available
commercially
- moved brief discussion of security control related requirements from utility applications
to 3.1.3 CF
– Moved 3.1.3.3.6 Adapters to 2.2.1.6.2 since adapters are implementations of the CF
Resource interface, not separate CF interfaces
- moved StringConsumer to the Framework Service Interface section
- moved 3.1.3.1.8 CF PushPort Interfaces and 3.1.3.1.9 CF PullPort Interfaces to 3.2.1.3.1
Applications – CF Interface Extensions
– clarified and expanded CF interface definitions, behavior, types, etc.
- added Naming context definitions
- expanded definitions of Domain Profile
- clarified explanations regarding use of hardware attributes
- moved JTRS security requirements from section 5 to the Security Supplement to the SCA
Specification
- centralized discussion of registration body and UUIDs in section 7
- added appendix with Service Definition Description for APIs

Changes from the previous revision, other than editorial corrections, are marked with change bars
in the margins.

MSRC-5000SCA
rev. 1.0

i

Table of Contents

FOREWORD ... vii

1 INTRODUCTION .. 1-1
1.1 Scope. .. 1-1
1.2 Compliance... 1-2

1.2.1 Joint Technical Architecture Compliance. .. 1-2
1.3 Document conventions, Terminology, and Definitions. ... 1-2

1.3.1 Conventions and Terminology. ... 1-2
1.3.1.1 Unified Modeling Language... 1-2
1.3.1.2 Interface Definition Language.. 1-2
1.3.1.3 eXtensible Markup Language... 1-3
1.3.1.4 Color Coding. ... 1-3
1.3.1.5 Requirements Language. .. 1-3
1.3.1.6 CF Interface and Operation Identification.. 1-3

1.3.2 Definitions. .. 1-3
1.4 Document Content. .. 1-3

2 OVERVIEW.. 2-1
2.1 Architecture Definition Methodology.. 2-1
2.2 Architecture Overview. ... 2-1

2.2.1 Overview - Software Architecture... 2-1
2.2.1.1 Bus Layer (Board Support Package). ... 2-2
2.2.1.2 Network & Serial Interface Services. ... 2-2
2.2.1.3 Operating System Layer. .. 2-2
2.2.1.4 Core Framework. .. 2-3
2.2.1.5 CORBA Middleware. ... 2-3
2.2.1.6 Application Layer. .. 2-3

2.2.1.6.1 Applications. .. 2-4
2.2.1.6.2 Adapters. .. 2-4

2.2.1.7 Software Radio Functional Concepts. .. 2-5
2.2.1.7.1 Software Reference Model... 2-5
2.2.1.7.2 ModemDevice Functionality. ... 2-7
2.2.1.7.3 NetworkResource and LinkResource Functionality. .. 2-8
2.2.1.7.4 I/ODevice Functionality. .. 2-9
2.2.1.7.5 SecurityDevice Functionality. .. 2-10
2.2.1.7.6 UtilityResource Functionality. ... 2-11

2.2.1.8 System Control. .. 2-11
2.2.2 Networking Overview. .. 2-12

2.2.2.1 External Networking Protocols. ... 2-13
2.2.2.2 SCA Support for External Networking Protocols. ... 2-14

2.2.3 Overview - Hardware Architecture. .. 2-15

MSRC-5000SCA
rev. 1.0

ii

3 SOFTWARE ARCHITECTURE DEFINITION .. 3-1
3.1 Operating Environment. ... 3-1

3.1.1 Operating System. ... 3-1
3.1.2 Middleware & Services. .. 3-2

3.1.2.1 CORBA. ... 3-2
3.1.2.2 CORBA Extensions. ... 3-2

3.1.2.2.1 Naming Service. ... 3-2
3.1.2.2.2 Quality of Service Control. .. 3-2

3.1.3 Core Framework. ... 3-2
3.1.3.1 Base Application Interfaces.. 3-4

3.1.3.1.1 Port... 3-4
3.1.3.1.2 LifeCycle. ... 3-6
3.1.3.1.3 TestableObject.. 3-7
3.1.3.1.4 PropertySet... 3-8
3.1.3.1.5 Resource. .. 3-10
3.1.3.1.6 ResourceFactory. ... 3-13

3.1.3.2 Framework Control Interfaces.. 3-16
3.1.3.2.1 Application. .. 3-16
3.1.3.2.2 ApplicationFactory... 3-19
3.1.3.2.3 DomainManager. ... 3-24
3.1.3.2.4 Device... 3-32
3.1.3.2.5 DeviceManager. ... 3-40

3.1.3.3 Framework Services Interfaces... 3-44
3.1.3.3.1 File. .. 3-44
3.1.3.3.2 FileSystem. ... 3-47
3.1.3.3.3 FileManager... 3-52
3.1.3.3.4 StringConsumer.. 3-56
3.1.3.3.5 Logger. ... 3-57
3.1.3.3.6 Timer. ... 3-66

3.1.3.4 Domain Profile. .. 3-66
3.1.3.4.1 Software Package Descriptor. .. 3-67
3.1.3.4.2 Software Component Descriptor. ... 3-67
3.1.3.4.3 Software Assembly Descriptor... 3-68
3.1.3.4.4 Property File. .. 3-68
3.1.3.4.5 Device Package Descriptor File. .. 3-68
3.1.3.4.6 Device Assembly Descriptor.. 3-68

3.2 Applications.. 3-69
3.2.1 General Application Requirements.. 3-69

3.2.1.1 OS Services... 3-69
3.2.1.2 CORBA Services. ... 3-69
3.2.1.3 CF Interfaces... 3-69

3.2.1.3.1 CF Interface Extensions. .. 3-69
3.2.2 Application Interfaces.. 3-71

3.2.2.1 Utility Applications. ... 3-71
3.2.2.1.1 Installer Utility. .. 3-71

3.2.2.2 Service APIs. .. 3-73

MSRC-5000SCA
rev. 1.0

iii

3.2.2.2.1 Service Definitions... 3-73
3.2.2.2.2 API Transfer Mechanisms.. 3-75

3.3 General Software Rules... 3-78
3.3.1 Software Development Languages. ... 3-78

3.3.1.1 New Software. .. 3-78
3.3.1.2 Legacy Software. .. 3-78

4 HARDWARE ARCHITECTURE DEFINITION ... 4-1
4.1 Basic Approach. ... 4-1
4.2 Class Structure... 4-1

4.2.1 Top Level Class Structure. .. 4-2
4.2.2 HWModule(s) Class Structure. .. 4-3
4.2.3 Class Structure with Extensions. ... 4-4

4.2.3.1 RF Class Extension... 4-4
4.2.3.2 Modem Class Extension.. 4-6
4.2.3.3 Processor Class Extension. .. 4-7
4.2.3.4 INFOSEC Class. ... 4-8
4.2.3.5 I/O Class Extension. ... 4-9

4.2.4 Attribute Composition. .. 4-10
4.3 Domain Criteria. .. 4-10
4.4 Performance Related Issues.. 4-10
4.5 General Hardware Rules. ... 4-11

4.5.1 Device Profile. ... 4-11
4.5.2 Hardware Critical Interfaces.. 4-11

4.5.2.1 Interface Definition... 4-11
4.5.2.2 Interface Standards. .. 4-11

4.5.2.2.1 Interface Selection.. 4-11
4.5.3 Form Factor. .. 4-11
4.5.4 Modularity. .. 4-11

5 SECURITY ARCHITECTURE DEFINITION... 5-1

6 COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS............................. 6-1
6.1 Common System Services. .. 6-1
6.2 Operational and Deployment Considerations... 6-1

7 ARCHITECTURE COMPLIANCE... 7-1
7.1 Certification Authority.. 7-1
7.2 Responsibility for Compliance Evaluation.. 7-1
7.3 Evaluating Compliance. .. 7-1
7.4 Registration. ... 7-1

MSRC-5000SCA
rev. 1.0

iv

APPENDIX A. GLOSSARY

APPENDIX B. SCA APPLICATION ENVIRONMENT PROFILE

APPENDIX C. CORE FRAMEWORK IDL

APPENDIX D. DOMAIN PROFILE

APPENDIX E. SERVICE DEFINITION DESCRIPTION

MSRC-5000SCA
rev. 1.0

v

List of Figures
Figure 1-1. The Architecture Framework and its Relationship to Implementation......................... 1-2
Figure 1-2. Color Coding Used in Document Figures... 1-3
Figure 2-1. Software Structure .. 2-2
Figure 2-2. Example Message Flows with and without Adapters ... 2-5
Figure 2-3. Software Reference Model ... 2-5
Figure 2-4. Conceptual Model of Resources ... 2-6
Figure 2-5. Example of Modem Resources ... 2-7
Figure 2-6. Example of Networking Resources .. 2-8
Figure 2-7. Examples of I/O Resources... 2-9
Figure 2-8. Examples of Security Devices and Resources .. 2-10
Figure 2-9. Example of Utility Resources ... 2-11
Figure 2-10. External Network Protocols and SCA Support... 2-12
Figure 2-11. SCA-Supported Networking Mapped to OSI Network Model................................. 2-14
Figure 2-12. Hardware Architecture Framework ... 2-16
Figure 3-1. Notional Relationship of OE and Application to the SCA AEP................................... 3-1
Figure 3-2. Core Framework IDL Relationships... 3-3
Figure 3-3. Port Interface UML .. 3-4
Figure 3-4. LifeCycle Interface UML .. 3-6
Figure 3-5. TestableObject Interface UML ... 3-7
Figure 3-6. PropertySet Interface UML .. 3-9
Figure 3-7. Resource Interface UML... 3-11
Figure 3-8. ResourceFactory Interface UML.. 3-14
Figure 3-9. Application Interface UML... 3-17
Figure 3-10. Application Behavior .. 3-19
Figure 3-11. ApplicationFactory UML ... 3-20
Figure 3-12. ApplicationFactory Behavior.. 3-24
Figure 3-13. DomainManager Interface UML.. 3-25
Figure 3-14. DomainManager Sequence Diagram for RegisterDeviceManager Operation......... 3-27
Figure 3-15. DomainManager Sequence Diagram for RegisterDevice Operation........................ 3-29
Figure 3-16. Device Interface UML .. 3-33
Figure 3-17. DeviceManager UML... 3-41
Figure 3-18. File Interface UML... 3-44
Figure 3-19. FileSystem Interface UML.. 3-47
Figure 3-20. FileManager Interface UML .. 3-53
Figure 3-21. StringConsumer Interface UML ... 3-56
Figure 3-22. Logger Interface UML.. 3-57
Figure 3-23. LogData Operational Behavior ... 3-61
Figure 3-24. Relationship of Domain Profile XML File Types .. 3-67
Figure 3-25. PushPort Data Interfaces... 3-70
Figure 3-26. PullPort Data Interfaces .. 3-71
Figure 3-27. Device Installation Sequence Diagram... 3-72
Figure 3-28. Software Installation Sequence Diagram.. 3-73
Figure 3-29. Reusing an Existing Service Definition Without an IDL Interface 3-75
Figure 3-30. Standard and Alternate Transfer Mechanism ... 3-76
Figure 4-1. Top Level Hardware Class Structure.. 4-2

MSRC-5000SCA
rev. 1.0

vi

Figure 4-2. Hardware Module Class Structure .. 4-3
Figure 4-3. RF Class Extension... 4-5
Figure 4-4. Modem Class Extension ... 4-6
Figure 4-5. Processor Class ... 4-7
Figure 4-6. INFOSEC Class .. 4-8
Figure 4-7. I/O Class Extension .. 4-9
Figure 4-8. Typcial Hardware Device Description using the SCA HW Class Structure 4-10

List of Tables
Table 3-1. Logger, Consumers, and Producers Log Levels .. 3-59

MSRC-5000SCA
rev. 1.0

vii

Foreword

Introduction. The Software Communication Architecture (SCA) specification is being published
by the Joint Tactical Radio System (JTRS) Joint Program Office (JPO). This program office was
established to pursue the development of future communication systems, capturing the benefits of
the technology advances of recent years which are expected to greatly enhance interoperability of
communication systems and reduce development and deployment costs. The goals set for the
program are:

− Greatly increased operational flexibility and interoperability of globally deployed systems
− Reduced supportability costs
− Upgradeability in terms of easy technology insertion and capability upgrades
− Reduced system acquisition and operation cost

In order to achieve these goals, the SCA has been structured to

− provide for portability of applications software between different SCA implementations
− leverage commercial standards to reduce development cost
− reduce development time of new waveforms through the ability to reuse design modules
− build on evolving commercial frameworks and architectures

The SCA is deliberately designed to meet commercial application requirements as well as more
stringent military applications. It is the expectation of the Government that the SCA will become a
commercially approved standard. It is for this reason that a wide cross section of industry has been
invited to participate in the development and the validation of the SCA. The SCA is not a system
specification, as it is intended to be implementation independent, but a set of rules that constrain the
design of systems to achieve the objectives listed above. The SCA specification version 1.0
establishes the baseline for architecture validation and for future development. The validation of
the SCA includes the demonstration that multiple vendors can independently design systems,
which, when built according to the SCA requirements, meet the program goals outlined above.
Lessons learned during the validation will be incorporated into future SCA releases. SCA version
2.0 is planned for release in November 2000.

The SCA documentation consists of the basic architecture specification containing all requirements
necessary for general, commercial implementation, and supplements which contain military-unique
requirements pertaining to security and application implementation.

Software Structure. The software framework of the SCA defines the Operating Environment (OE)
and specifies the services and interfaces that applications use from that environment. The OE is
made of:

- a Core Framework (CF),
- a software transfer mechanism called CORBA, and
- an Operating System (OS) with associated board support packages.

MSRC-5000SCA
rev. 1.0

viii

The OE imposes design constraints on waveform and other applications to provide increased
portability of those applications from one SCA-compliant radio platform to another. These design
constraints include specified interfaces between the Core Framework and application software, and
restrictions on waveform usage of the Operating System. This approach also provides a building-
block structure for defining application programming interfaces (APIs) between application
software components. This building-block structure for API definition facilitates component-level
reuse and allows significant flexibility for developers to define waveform-specific APIs.

The SCA makes use of object-oriented (OO) design to define the software structure and represents
the interface and service definitions in terms of classes and inheritance of the OO approach. The
SCA does not impose any one specific structure on software applications, although many of the
examples cited do partition applications into radio associated elements like Modem, Link, Network,
Security, and Host Interface. These illustrate the concepts of inheritance from base classes,
interfaces and services of the CF.

Hardware Structure. The hardware framework also uses OO concepts to define typical partitions
of real systems. The primary purpose of the hardware structure is to require complete and
comprehensive publication of interfaces and attributes once systems have been built. With these
published specifications, additional venders can provide modules within a system and software
developers can identify hardware modules with capabilities required for a particular waveform
application. Hardware modularity also facilitates technology insertion as future programmable
elements increase in capability.

Military Applications. To maximize the commercial application of the SCA and benefit from
advances that will accrue, military-unique system requirements are in supplemental SCA
documentation. These Supplements to the SCA Specification include:

- security requirements to insure adequate protection of military secure communications
and facility certifications of JTRS product systems from the NSA, and

- an Application Program Interface (API) structure associated with radio system services
such as modem, networking, security, and external interfaces. These APIs, when fully
defined, improve portability of applications within JTRS implementations, and make
reuse of functional components of those applications easier. For example, standardizing
APIs for a security module within a JTRS enables reuse of common modules for
multiple waveform applications. Standardizing networking APIs improves portability of
networking applications and offers easier internetworking functions such as routing,
bridging and providing gateways. {This Supplement is being developed and is not
currently available.}

An additional accompanying document, the Support and Rationale Document (SRD), provides the
rationale behind architectural decisions along with further supporting material. The SRD is planned
for initial release in June 2000.

Future Directions. The next major release of the SCA, v2.0, is planned at the end of the ongoing
prototyping and validation phase. This release will incorporate lessons learned from prototyping
and validation, as well as input received from industry review of v1.0.

MSRC-5000SCA
rev. 1.0

ix

The JTRS JPO intends to extend the SCA to further define application structure in the form of
required functional partitions for military waveform software applications and hardware modules.
This will take the form of APIs noted above and improve portability and interoperability for
military applications.

Feedback. An open architecture framework is greatly improved through active feedback and
recommended changes from a wide audience of potential users. The JTRS JPO solicits and
encourages feedback to this document and provides a form available from
http://www.jtrs.sarda.army.mil/docs/documents/sca.html. Send the completed form to
jtrs.sca@sarda.army.mil. Recommended additions to the SCA must be unencumbered by copyright
restrictions or intellectual property rights. Changes to the SCA are controlled by a jointly-chaired
JTRS JPO and industry Configuration Control Board (CCB).

http://www.jtrs.sarda.army.mil/docs/documents/sca.html
mailto:jtrs.sca@sarda.army.mil

MSRC-5000SCA
rev. 1.0

x

MSRC-5000SCA
rev. 1.0

1-1

1 INTRODUCTION
The Software Communications Architecture (SCA) specification establishes an implementation-
independent framework with baseline requirements for the development of Joint Tactical Radio
System (JTRS) software configurable radios. These requirements are comprised of interface
specifications, application program interfaces (APIs), behavioral specifications, and rules. The
goal of this specification is to ensure the portability and configurability of the software and
hardware and to ensure interoperability of products developed using the SCA.

Companion documents to this specification are Supplements to the SCA and the SCA Support and
Rationale Document (SRD). The Supplements provide specific service and application interface
requirements (for Security, networking, other services). The SRD provides the rationale for the
SCA and examples to illustrate the implementation of the architecture for differing
domains/platforms and selected waveforms.

1.1 SCOPE.

This document provides a complete definition of the SCA. It is an Architecture Framework in that
it is precise in areas where reusability is effected and it is general in other areas so that unique
requirements of implementations determine the specific application of the architecture. The SCA
defines the hardware and software at different levels of detail to allow the broadest reusability and
portability of components.

For hardware, the physical and environmental differences across domains are so diverse that
physical commonality cannot be achieved for all implementations. However, by using an Object-
Oriented (OO) description for the hardware, represented as hardware classes, all potential system
implementations are included within a single framework. That framework has attributes (i.e.,
behavior and interfaces) that are applicable across those different implementations.

The architecture for software makes extensive use of object modeling and is contained in the
definition of a Core Framework (CF), an integral part of a system's Operating Environment (OE).
Constraints on the software development, imposed by the architecture, are on the interfaces and the
structure of the software and not on the implementation of the functions that are performed. In this
way, innovative designs can be put forward with appropriate protection of the developer’s
intellectual property and still reap the benefits of wide reuse in other implementations of the
architecture. The SCA permits either hardware or software to be used in implementing a required
function. The approach taken also permits legacy solutions to be incorporated, where appropriate,
by encapsulation techniques to provide a “one-sided” standard interface into architecture interfaces.

This architecture specifies rules that further constrain implementations to adhere to open system
standards. Specific implementation requirements may augment the rule-set to increase reusability
within and across domains.

Figure 1-1 illustrates the concept of the SCA and its implementation down to specific platforms.
The hardware definition stays at a framework level with rules providing implementation guidance
down into domains and platforms. The software definition can be applied directly down to
implementation because of its general independence from hardware implementation. There are
special cases where size, weight, and power requirements limit the direct application of software
objects. However, even in these cases, reusability of designs, captured in software and firmware
modeling and simulation tools, reduces the cost of implementation and the development time.

MSRC-5000SCA
rev. 1.0

1-2

Software Communications
 Architecture Framework

Domains

Implementation

H/W

Specific Objects
and Interface
Specifications

R
U
L
E
S

Classes and
Sub-classes

Core Framework
(CF)

Operating
Environment

(OE)

Object Models
& IDL

S/W

Specific Objects

Figure 1-1. The Architecture Framework and its Relationship to Implementation

1.2 COMPLIANCE.

The interfaces, behavior, and rules that define compliance with the SCA are identified in, and are
an integral part of this specification. These elements are selected to maximize portability,
interoperability, and configurability of the software and hardware while allowing a procurer the
flexibility to address domain requirements and restrictions. If any requirements stated in this
specification are in conflict with existing standards/specifications, this specification takes
precedence.

1.2.1 Joint Technical Architecture Compliance.

The Joint Technical Architecture (JTA) mandates the minimum set of standards and guidelines for
all DoD Command, Control, Communications, Computers, and Intelligence (C4I) systems
acquisition. A foremost objective of the JTA is to improve and facilitate the ability of systems to
support joint and combined operations in an overall investment strategy. The SCA Operating
Environment fully complies with the JTA and provides a JTA-compliant framework for waveforms
and other applications.

1.3 DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.

1.3.1 Conventions and Terminology.

1.3.1.1 Unified Modeling Language.

The Unified Modeling Language (UML), defined by the Object Management Group (OMG), is
used to graphically represent SCA interfaces, scenarios, use cases, and collaboration diagrams.

1.3.1.2 Interface Definition Language.

Interface Definition Language (IDL), also defined by the OMG, is used to define the SCA
interfaces. IDL is programming language independent and can be compiled into programming
languages such as C++, Ada, and Java.

MSRC-5000SCA
rev. 1.0

1-3

1.3.1.3 eXtensible Markup Language.

eXtensible Markup Language (XML) is used in a Domain Profile to identify the capabilities,
properties, inter-dependencies, and location of the hardware devices and software components that
make up an SCA-compliant system

1.3.1.4 Color Coding.

Color-coding is used to differentiate between architecture elements and applications in diagrams as
shown in figure 1-2.

Core Framework (CF) elements

Commercial-Off-The-Shelf (COTS) components

Host Applications

Red Side Network and Link Applications

Security Applications

Black Side Network and Link Applications

Modem Applications

RF

Figure 1-2. Color Coding Used in Document Figures

1.3.1.5 Requirements Language.

Interfaces, behavior, and rules that are imposed by this specification appear in sections 3 through 5
and are indicated by the word "shall". Editorial notes are contained within brackets and are
italicized ({example}).

1.3.1.6 CF Interface and Operation Identification.

CF interfaces and their operations are presented in italicized text.

1.3.2 Definitions.

Definitions are included in Appendix A.

1.4 DOCUMENT CONTENT.

This document provides an overview of the SCA in section 2, followed by the Software, Hardware,
and Security architecture requirements in sections 3 – 5. Section 6 addresses requirements not
contained in those functional categories. Evaluation criteria for product compliance to this
specification are addressed in section 7.

MSRC-5000SCA
rev. 1.0

1-4

Appendices include a glossary, a complete listing of CF IDL, and details of architecture
requirements introduced in the main document.

MSRC-5000SCA
rev. 1.0

2-1

2 OVERVIEW
This Section presents an overview of the SCA. Emphasis is on identifying the components of
the architecture and the manner in which these components interact. Technical details and
requirements of the architecture are contained in Sections 3 - 5.

2.1 ARCHITECTURE DEFINITION METHODOLOGY.

The architecture has been developed using an object-oriented approach wherein the process can
be continued beyond the framework definition to product development. UML is used to
graphically represent interfaces while IDL is used to define them; both have been generated
using standard software development tools, allowing product development to continue directly
from the architecture definition.

2.2 ARCHITECTURE OVERVIEW.

2.2.1 Overview - Software Architecture.

The structure of the software architecture is shown in figure 2-1. The key benefits of the
software architecture are that it:

1. Maximizes the use of commercial protocols and products,

2. Isolates both core and non-core applications from the underlying hardware through
multiple layers of open, commercial software infrastructure, and

3. Provides for a distributed processing environment through the use of the Common
Object Request Broker Architecture (CORBA) to provide software application
portability, reusability, and scalability.

The software architecture defines an Operating Environment (OE) with the combined set of CF
services and infrastructure software (including board support packages, operating system and
services, and CORBA Middleware services) integrated in an SCA implementation. The software
partitions that illustrate applications are typical of how waveforms might be implemented using
the SCA.

MSRC-5000SCA
rev. 1.0

2-2

Core Framework (CF)
Commercial Off-the-Shelf (COTS)

Applications

OE

Red (Non-Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Black (Secure) Hardware Bus

CF
Services &

Applications

CORBA ORB &
Services

(Middleware)

Network Stacks & Serial Interface Services

Board Support Package (Bus Layer)

POSIX Operating System

Core Framework IDL (“Logical Software Bus” via CORBA)

Non-CORBA
Modem

Applications
Non-CORBA
Modem API

Non-CORBA
Security

Applications

Non-CORBA
Host

Applications
Non-CORBA
Security APIRF

Modem
Applications

Link, Network
Applications

Security
Applications

Modem
Adapter

Security
Adapter

Security
Adapter

Host
Adapter

Host
Applications

Modem API Link, Network NAPI Link, Network NAPI

Non-CORBA
Host API

Link, Network
Applications

APISecurity

Figure 2-1. Software Structure

2.2.1.1 Bus Layer (Board Support Package).

The Software Architecture is capable of operating on commercial bus architectures. The OE
supports reliable transport mechanisms, which may include error checking and correction at the
bus support level. Possible buses include VME, PCI, CompactPCI, Firewire (IEEE-1394), and
Ethernet. The OE does not preclude the use of different bus architectures on the Red and Black
subsystems.

2.2.1.2 Network & Serial Interface Services.

The Software Architecture relies on commercial components to support multiple unique serial
and network interfaces. Possible serial and network physical interfaces include RS-232, RS-422,
RS-423, RS-485, Ethernet, and 802.x. To support these interfaces, various low-level network
protocols may be used. They include PPP, SLIP, LAPx, and others. Elements of waveform
networking functionality may also exist at the Operating System layer. An example of this
would be a commercial IP stack that performs routing between waveforms.

2.2.1.3 Operating System Layer.

The Software Architecture includes real-time embedded operating system functions to provide
multi-threaded support for applications (including CF applications). The architecture requires a
standard operating system interface for operating system services in order to facilitate portability
of applications.

MSRC-5000SCA
rev. 1.0

2-3

Portable Operating System Interface (POSIX) is an accepted industry standard. POSIX and its
real-time extensions are compatible with the requirements to support the OMG CORBA
specification. Complete POSIX compliance encompasses more features than are necessary to
control a typical implementation. Therefore, this specification defines a minimal POSIX profile
to meet SCA requirements. The SCA POSIX profile is based upon the Real-time Controller
System Profile (PSE52) as defined in POSIX 1003.13.

2.2.1.4 Core Framework.

The CF is the essential (“core”) set of open application-layer interfaces and services to provide
an abstraction of the underlying software and hardware layers for software application designers.
Section 3 presents the complete definition of all services and interfaces of the CF. The CF
consists of:

1. Base Application Interfaces (Port, LifeCycle, TestableObject, PropertySet,
ResourceFactory, and Resource) that can be used by all software applications,

2. Framework Control Interfaces (Application, ApplicationFactory, DomainManager,
Device, and DeviceManager) that provide control of the system,

3. Framework Services Interfaces that support both core and non-core applications (File,
FileSystem, FileManager, StringConsumer, Logger, and Timer), and

4. A Domain Profile that describes the properties of hardware devices (Device Profile)
and software components (Software Profile) in the system.

The Domain Profile supports the combination of resources to create applications. Device Profile
and Software Profile files utilize an XML vocabulary to describe specific characteristics of either
software or device components with regard to their interfaces, functional capabilities, logical
location, inter-dependencies, and other pertinent parameters.

2.2.1.5 CORBA Middleware.

CORBA is used in the CF as the message passing technique for the distributed processing
environment. CORBA is a cross-platform framework that can be used to standardize
client/server operations when using distributed processing. Distributed processing is a
fundamental aspect of the system architecture and CORBA is a widely used “Middleware”
service for providing distributed processing.

All CF interfaces are defined in IDL. The CORBA protocol provides message marshalling to
handle the bit packing and handshaking required for delivering the message. The SCA IDL
defines operations and attributes that serve as a contract between components.

2.2.1.6 Application Layer.

Applications perform user communication functions that include modem-level digital signal
processing, link-level protocol processing, network-level protocol processing, internetwork
routing, external input/output (I/O) access, security, and embedded utilities. Applications are
required to use the CF interfaces and services. Applications' direct access to the Operating
System (OS) is limited to the services specified in the SCA POSIX Profile. Networking
functionality that may be implemented below the application layer, such as a commercial IP
network layer, is not limited to the SCA POSIX Profile since it exists in the OS kernel space.

 POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

MSRC-5000SCA
rev. 1.0

2-4

2.2.1.6.1 Applications.

Applications consist of one or more Resources. The Resource interface provides a common API
for the control and configuration of a software component. The application developers can
extend these definitions by creating specialized Resource interfaces for the application. At a
minimum, the extension inherits the Resource interface. Examples of Resource extensions are:
LinkResource, NetworkResource, and UtilityResource.

Devices are types of Resources used by applications as software proxies for actual hardware
devices. ModemDevice, I/ODevice, and SecurityDevice are examples that implement the Device
interfaces.

ModemDevice, LinkResource, SecurityDevice, I/ODevice, and NetworkResource are base
application interface extensions that implement APIs for waveform and networking applications.

The design of a Resource’s internal functionality is not dictated by the Software Architecture.
This is left to the application developer. Core applications, which are a part of the CF, support
the non-core applications by providing the necessary function of control as well as standard
interface definitions. The interfaces by which a Resource is controlled and communicates with
other Resources are defined in section 3.

2.2.1.6.2 Adapters.

Adapters are Resources or Devices used to support non-CORBA-capable elements. Adapters are
used in an implementation to provide the translation between non-CORBA-capable components
or devices and CORBA-capable Resources. The Adapter concept is based on the industry-
accepted Adapter design pattern1. Since an Adapter implements the CF CORBA interfaces
known to other CORBA-capable Resources, the translation service is transparent to the CORBA-
capable Resources. Adapters become particularly useful to support non-CORBA-capable
Modem, Security, and Host processing elements. Figure 2-2 depicts an example of message
reception flow through the system with and without the use of Adapters. Modem, Security, and
Host Adapters implement the interfaces marked by the circled letters M, S, and H respectively.
Notice that the Waveform Link and Network Resources are unaffected by the inclusion or
exclusion of the Adapters. The interface to these Resources remains the same in either case.

1 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

MSRC-5000SCA
rev. 1.0

2-5

CORBA
SecurityDevice

Host
Adapter

RF

Non-CORBA
Host

CORBA
 HostResource

Waveform
NetworkResource

Waveform
 LinkResource

Non-CORBA
Modem

CORBA
ModemDevice

S

S

S

SM

M

(2) (3) (4) (5)

(1)

(1)

(2)

(3) (4)

(5) (6)

(7) (8)

(9)

 Message Reception Path (with Adapters)
 (1) RF Interface to Modem
 (2) non-CORBA Modem Interface
 (3) CORBA Interface to Waveform Link
 (4) CORBA Interface to Security Adapter
 (5) Black-side non-CORBA Security Interface
 (6) Red-side non-CORBA Security Interface
 (7) CORBA Interface to Waveform Network
 (8) CORBA Interface to Host Adapter
 (9) non-CORBA Host Interface

 Message Reception Path (without Adapters)
 (1) RF Interface to Modem
 (2) CORBA Interface to Waveform Link
 (3) CORBA Interface to Security
 (4) CORBA Interface to Waveform Network
 (5) CORBA Interface to Host

M

S

S Note: The design goal of a CORBA gateway “Adapter” is to
define the CORBA side of the gateway such that the eventual
replacement of the non-CORBA device and its Adapter does
not change the Core Framework CORBA interface.

Modem
Adapter

Security
Adapter

Security
Adapter

H

H

H

M
S

S

H

Non-CORBA
SecurityDevice

Figure 2-2. Example Message Flows with and without Adapters

2.2.1.7 Software Radio Functional Concepts.

2.2.1.7.1 Software Reference Model.

The software reference model depicted in figure 2-3 is based upon the Programmable Modular
Communication System (PMCS) Reference Model. This model forms a basis for the SCA by:

1. Introducing the various functional roles performed by software entities without
dictating a structural model of these elements, and

2. Introducing the control and traffic data interfaces between the functional software
entities.

Analog

Control

RF Modem Security Internetwork
Utility,
Router,

Network,
Bridge,

Link

Digital Data

System Control

HCI (Control)

Security Monitor
(part of INFOSEC)

Air

I/O

HCI
(Data)

Black Proc.
Utility,
Router,

Network,
Bridge,

Link

Antenna

Utility,
Access

Utility,
Access

Waveform,
Repeater

Waveform

Figure 2-3. Software Reference Model

MSRC-5000SCA
rev. 1.0

2-6

The Reference Model identifies relevant functionality but does not dictate the architecture. The
SCA realizes the Software Reference Model by defining a standard unit of functionality called a
Resource. All applications are comprised of Resources and using Devices. Specific resources
and devices can be identified corresponding to the functional entities of the Software Reference
Model:

ModemDevice: addresses Antenna, RF, and Modem entities,
LinkResource: addresses Black Processing entity,
SecurityDevice: addresses Security entity,
NetworkResource: addresses Internetworking entity,
I/ODevice: addresses external interfaces such as serial, ethernet, and audio
UtilityResource: addresses non-Waveform functionality.

System control entity functionality is addressed by the core framework applications:
Application, ApplicationFactory, DomainManager, Device, and DeviceManager. Control
functionality may also be localized in individual resources.

As shown in figure 2-4, all Resources and Devices inherit three Base Application Interfaces. The
operations and attributes provided by LifeCycle, TestableObject, and PropertySet establish a
common approach for interacting with any resource in a SCA environment. Port can be used for
pushing or pulling messages between Resources and Devices. A Resource may consist of zero or
more input and output message ports. The figure also shows examples of more specialized
resources and devices that result in specific functionality for each of six example types.
Clarification of the functionality associated with each of those is provided in the following
subsections.

LinkResource

Link API

Waveform
LinkResource

Bridge
Resource

are example types of

PropertySetLifeCycle

Resource 1

0..*

Base Application Interfaces

Security
DomainDevice

SecurityDevice

Waveform
ModemDevice

AudioDevice

I/ODevice

are example types of

SitAwareResourceMsgFilterResource

UtilityResource

are example types of

Waveform
NetworkResource

NetworkResource

Network API

Repeater
Device

Router
Resource

Gateway
Resource

are example types ofare example types ofare example types of

Modem
Adapter

Security
Adapter

Serial
Device

Host
Adapter

ModemDevice

Modem API

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF

Waveform

Repeater
TestableObjectPort

Device
1

0..*

Ethernet
Device

Security API

are example types ofare example types of

Figure 2-4. Conceptual Model of Resources

MSRC-5000SCA
rev. 1.0

2-7

2.2.1.7.2 ModemDevice Functionality.

The ModemDevice provides a standard for the control and interface of a modem, which
encapsulates diverse implementations of smart antenna, RF, and modem functions. The base
application interfaces are extended to modem devices through a Modem API, which provides a
standard interface for control and communication with modem operations from a higher (link
layer) resource. The functions, performed by the ModemDevices, will vary depending on
waveform requirements as well as hardware/software allocation and are not dictated by the CF.
Typical RF and modem functions are depicted in figure 2-5.

Modulate Demodulate
Interleave Deinterleave
FEC_Encode FEC_Decode
Spread Despread
Filter Synchronize
Track Correlate
AcquirePacket SchedulePacket
TimeStamp TRANSEC
selfTest

1

0..*
Device

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource

LinkResource

Link API

ModemDevice

Modem API

WaveformModemDevice WaveformRF_AdapterDevice RepeaterAdapterDeviceModemAdapterDevice

TranslateModem

1..*1

UpConvert
DownConvert
GainControl
LevelControl
FrequencyControl
Equalize
Filter
BeamSteer
InterferenceNull
selfTest

Retransmit
ControlModem

are example types of

are example types of

Figure 2-5. Example of Modem Resources

MSRC-5000SCA
rev. 1.0

2-8

2.2.1.7.3 NetworkResource and LinkResource Functionality.

An example of networking resources is shown in figure 2-6. The CF base application interfaces
are extended to link layer and network layer resources through Networking APIs (see section
2.2.2.2), provided to enable information transfer and support of specific service characteristics
for networking applications. Examples are the Link API and Network API, which provide
standard interfaces for control and communication between link, network, and transport layer
resources.

The functions performed by the waveform networking and internetworking resources (examples
shown in note boxes in figure 2-6) will vary depending on waveform requirements as well as
networking requirements and are not dictated by the CF. Resources that provide networking
behavior, including repeater, link, bridge, network, router, and gateway operations, are
representative and not defined in the SCA.

1

0..*
Resource

WaveformLinkResource

LinkResource

Link API

NetworkResource

Network API

ModemDevice

Modem API

UtilityResource

RepeaterDevice GatewayResource

11..*
1

1..* 1

1..*

are example types of are example types of

Packetize
SchedulePacket
PrioritizePacket
AddressPacket
RoutePacket
MeasureLinkQuality
AnalyzeLinkQuality
ControlModem
selfTest

Retransmit
ControlModem

BridgeResource

ForwardPacket
ForwardQoS
PrioritizePacket
AddressPacket

RouterResource

TranslateAddress
Route
Multicast
Broadcast
DiscoverMobileNode
MaintainRoutingTable
ForwardQoS

TranslateMessage
TranslateVoice
TranslateVideo

WaveformNetworkResource

RouteMessage
MulticastMessage
BroadcastMessage
DiscoverNeighbor
MaintainRoutingTable
ForwardQoS
MeasureNetworkQuality
AnalyzeNetworkQuality
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Device

are example types ofexample type of

Figure 2-6. Example of Networking Resources

MSRC-5000SCA
rev. 1.0

2-9

2.2.1.7.4 I/ODevice Functionality.

Examples of I/ODevices are shown in figure 2-7. An I/ODevice provides access to system
hardware devices and external physical interfaces. The operations performed by an I/ODevice
will vary depending on the system hardware assets as well as the physical interfaces to be
supported and are not dictated by the CF. Typical I/O operations are depicted within the
example subclasses.

1

0..*
Device

I/ODevice

 are example types of

NetworkResource

Network API

UtilityResource

LinkResource

Link API

1

1..*

1..*

1..*

1

1

SerialDevice EthernetDevice AudioDevice

ConfigurePort
EncodeAudio
DecodeAudio
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

ConfigurePort
TransmitMessage
ReceiveMessage
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource
1

0..*

are example types of

example type of

Figure 2-7. Examples of I/O Resources

MSRC-5000SCA
rev. 1.0

2-10

2.2.1.7.5 SecurityDevice Functionality.

Examples of SecurityDevice and SecurityResource are shown in figure 2-8. Typical security
operations are depicted within the example subclasses. SecurityDevice subclasses extend
security functions to hardware devices within the system while SecurityResource subclasses
extend security functions to software components. There can be a wide variation of security
solutions both in hardware and software. Transmission security (TRANSEC) and
communications security (COMSEC) requirements also vary between waveforms. The location
of the security boundary with respect to networking requirements also varies between
waveforms. The CF base application interfaces are extended to SecurityResources through
Security APIs, which provide standard interfaces for control and communication between
security devices and resources and application waveforms.

External INFOSECDevice

Device
1

0..*

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

1

0..*
Resource

SecurityDevice

NetworkResource

Network API

LinkResource

Link API

Security API

I/ODevice

UtilityResourceModemDevice

Modem API
1..*1..*

1..*

1..* 1..*

1..*

1..* 1..*

1..*

1..*

INFOSECAdapterDevice

TranslateINFOSEC

EmbeddedINFOSECDevice

are example types of

SecurityResource

Security API

TRANSEC_Resource

Generate TRANSEC
 Stream

Guard_Resource

Control Data Path
Control Access
Monitor Security

are example types of
Encrypt

Decrypt

Synchronize/Resynchronize

Zeroize

Load Key

Authenticate

Bypass

GenerateTRANSECStream

are example types of are example types of

Figure 2-8. Examples of Security Devices and Resources

MSRC-5000SCA
rev. 1.0

2-11

2.2.1.7.6 UtilityResource Functionality.

An example of UtilityResource is shown in Figure 2-9. The operations performed by the utility
resources will vary depending on the embedded applications to be supported as well as host
interface protocol requirements and are not dictated by the CF. Typical utility operations are
depicted within the example subclasses. Ultimately, the UtilityResource encompasses any non-
waveform application that could execute in an SCA-compliant system.

2.2.1.8 System Control.

The SCA provides a specification for interfaces, services, and data formats for the control of
resources. Each resource establishes its controllable parameters with the DomainManager via a
Domain Profile. Applications constrain each resource's parameter values to their own needs.
Applications' controllable parameters are also in the Domain Profile.

Use of CORBA and the base application interfaces provides the means to have domain and
application control though a common interface. SerialDevice and EthernetDevice (in Figure 2-7)
are examples of the external interfaces available to a user. These examples show that system
control operations operate with human or machine interfaces either locally or remotely and
interact in a manner that facilitates portability.

Non-CORBA user terminals are interfaced through the use of Adapters.

1

1

0..*
Device

 are example types of

HostAdapterResource

TranslateHost

GatewayResource SitAwareResource

NetworkResource

Network API

UtilityResourceLinkResource

Link API

1

1..*

1..*

1..*
1

I/ODevice

CollectPositionReports
ConsolidatePositionReports
DisseminatePostionReports
selfTest

TranslateMessage
TranslateVoice
TranslateVideo
selfTest

MsgFilterResource

TypeFilter
GeographicFilter
PriorityFilter
selfTest

Modem

Security HCI

Core Framework (CF)

Utility,
Router

Network
Bridge
Link

Utility,
Router

Network
Bridge
Link

Utility,
Access

Black InternetModem

RF
Waveform

Repeater

Resource
1

0..*

are example types of

Figure 2-9. Example of Utility Resources

MSRC-5000SCA
rev. 1.0

2-12

2.2.2 Networking Overview.

SCA-compliant Radio Systems communicate with peer systems through protocols as shown in
figure 2-10. The external networking protocols between an SCA-compliant System and its peers
are part of waveform applications and are not specified by this architecture specification.
However, the interface definitions for the services required to implement the protocols within an
SCA-compliant System are specified (in the API Supplement).

Peer
Radio

System

SCA
Radio

System

Peer
Host

System

Peer
SCA Radio

System

ModemDevice

LinkResource

NetworkResource

Link
API

Service
Definition

Modem
API

Service
Definition

Networking

Transfer

Mechanism
Protocol
Entities

Typically each external networking protocol
will be implemented by a different set of

one or more protocol entities.

External
Networking

Protocols

Typically
CORBA IDL,
GIOP, & IIOP

Figure 2-10. External Network Protocols and SCA Support

MSRC-5000SCA
rev. 1.0

2-13

2.2.2.1 External Networking Protocols.

External networking protocols define the communications between an SCA-compliant Radio
System and its peer systems. These external networking protocols can run over wireless or
wireline physical media. Example protocols include Single Channel Ground/Airborne Radio
System (SINCGARS), Ethernet, HF Automatic Link Establishment (ALE), IEEE 802.11, IS-
95A, IP, and future networking protocols.

Through the external networking protocols, implemented by applications in an SCA-compliant
radio system and its peer systems, a network of nodes is formed interconnected by repeaters,
bridges, routers, and/or gateways. As shown in figure 2-11, external networking protocols will
typically interconnect at different layers using:

1. Physical layer interconnections with a repeater function,

2. Link layer interconnections with a bridge function,

3. Network layer interconnections with standard network routing, and/or

4. Upper layer interconnections with application gateways.

The different categories of interoperability are outlined below based upon the OSI Model. There
may be multiple levels of interoperability within the same system on a waveform by waveform
basis.

A. Physical Layer Interoperability. The external networking protocols provide a
compatible physical interface, including the signaling interface, but no higher layer
processing. This level of interoperability is adequate for a simple bit by bit bridging
or relay operation between two interfaces.

B. Link Layer Interoperability. The external networking protocols provide link layer
processing over all physical interfaces. This level of interoperability is adequate for
allowing the radio to be used as transport and for allowing the radio to use another
network as transport. Intelligent routing or switching decisions are limited to local
layer 2 routing.

C. Network Layer Interoperability. The external networking protocols provide network
layer address processing interoperability. The radio and the networks being inter-
operated are sub-networks of the same Inter-network. At this level, intelligent
switching and routing decisions can be made end-to-end.

D. Host Level Interoperability (Layers 4 – 7). Embedded applications can exchange
information with hosts attached to the network. An example of this is a handheld
radio that contains an embedded Situation Awareness (SA) application exchanging
SA updates with a vehicular platform in an external sub-network. In this example,
the radio provides message payload translations to allow two otherwise incompatible
hosts to communicate.

MSRC-5000SCA
rev. 1.0

2-14

7 - Application
6 - Presentation
5 - Session

4 - Transport

3
-
N
e
t
w
o
r
k

2 - Link

1 - Physical

3B
Inter-

network

3A
Sub-

network

OSI Layers

Repeater
Resource

 Waveform
Modem
Device

Network API

Modem API

 Waveform
 Modem
Device

Bridge
Resource

 Waveform
Link

Resource

 Waveform
Link

Resource

Waveform Network
Resource

Router
Resource

Gateway
Resource

Utility
Resource

Utility
Resource

Link API

Wireless to Wireless

RFRF

 Waveform
Modem
Device

Network API

Link API

Modem
API

 Wireline

Bridge
Resource

 Waveform
Link

Resource

 Wireline
Link

Resource

Waveform Network
Resource

Router
Resource

Gateway
Resource

Utility
Resource

Utility
Resource

Link API

Wireless to Wireline

Intra-networking
Resource

Lower
Layer

Resource

Lower
Layer

Resource

(Inter-)Networking
Resource

Inter-Networking
Resource

Lower Layer API

Symbology

1 1

2

1

• Traffic Flow is up one side
of protocol stack and down
the other side

• Traffic flow up or down the
protocol stack is shown via
 & while traffic flow
from one side of the
protocol stack to the other
is shown by & .

• The Lower Layer API
interface is used for flows
 & while the Upper
Layer API is used for
flow .

• Resources shown as
can flow data vertically,
Resources shown as
can flow data horizontally,
and Resources shown as

can flow data
vertically and/or
horizontally.

2

Upper Layer API3 3

4

3

4

1 2

3

RFRF RFRF

Inter-network
Resource

Inter-network
Resource

Link API

Waveform
Intra-network

Resource

 Waveform
Intra-network

Resource

Figure 2-11. SCA-Supported Networking Mapped to OSI Network Model

2.2.2.2 SCA Support for External Networking Protocols.

Figure 2-10 shows that within an SCA-compliant Radio System, application protocol entities are
used to implement the external networking protocols. These protocol entities are networking
applications2. Entity types that support external networking protocols include ModemDevice,
LinkResource, NetworkResource, SecurityDevice, I/ODevice, and UtilityResource. Typically,

2 External networking protocol entities can reside within an application or within the kernel
space of operating systems. These external networking protocol applications are not necessarily
the same as OSI layer 7 applications. (When an application uses protocol entities within the OS
kernel space, and that kernel space is also used for internal system CORBA transport protocol,
additional security protection may be required to prevent external network nodes from directly
connecting with internal CORBA objects.)

MSRC-5000SCA
rev. 1.0

2-15

each waveform or wireline protocol will be implemented by a unique set of one or more protocol
entities. A unique set of protocol entities implements the protocol stack specified by a waveform
or wireline protocol. A radio system implementing multiple waveform applications may have
multiple protocol entities at each protocol layer.

In order to support application portability, standard interfaces are required between application
protocol entities. These Networking APIs, support the concept of a service interface between a
service provider (usually the lower OSI protocol layer) and a service user (usually the higher OSI
protocol layer).

Networking APIs, like other waveform application APIs, are extensions to the CF base
application interfaces that are inherited from the Resource class. APIs can be extended allowing
vendors to provide value-added features that distinguish themselves from their competitors.

Two Networking API types are illustrated in this section: a Link API associated with the
LinkResource and a Network API associated with the NetworkResource. (A Modem API is
associated with the ModemDevice for a Networking OSI link layer protocol as well as for other,
non-networking applications.) The APIs can be mapped into the OSI Networking Protocol
model as shown in figure 2-11. This figure shows two very similar protocol stacks for wireless-
to-wireless networking and wireless-to-wireline networking. The difference is that the wireline
stack has a WirelineDevice at the physical layer instead of a ModemDevice. (Note that the OSI
network layer maybe split into multiple network resources as shown in figure 2-11. In most
cases, the layer 3A sub-network has a link API to the upper layer 3B inter-network (for example
when layer 3B is IP). However, for some network waveform protocols, the layer 3A interface
may be the network API).

The SCA defines a Networking API Instance to provide the mechanism for distributing the
protocol layers within a SCA-compliant Radio System. A Networking API Instance is a
coupling of a Networking API Service Definition and a Networking Transfer Mechanism for a
particular waveform implementation. The Service Definition for a waveform protocol layer
details the primitives (operations), the parameters (variables), their representation (structures,
types, formats), and its behavior. The networking transfer mechanism provides the
communication between the waveform protocol layer service provider and a service user.
CORBA is the preferred transfer mechanism. Because security requirements for a particular
implementation may be met using services associated with CORBA, later introduction of a
different transfer mechanism requires careful analysis of the security services that can be
provided by that transfer mechanism. Figure 2-10 shows the relationship between protocol
entities, Service Definitions, and Networking Transfer Mechanisms.

2.2.3 Overview - Hardware Architecture.

Partitioning the hardware into classes places emphasis on the physical elements of the system
and how they are composed of functional elements. These classes define common elements
sharing physical attributes (characteristics and interfaces) that carry over to implementation for
specific domain platforms. The same framework applies to all domains. Appropriate application
of the requirements leads to common hardware modules for different platforms. A summary
view of the hardware framework is shown in figure 2-12.

MSRC-5000SCA
rev. 1.0

2-16

SCA-Compliant Hardware

Chassis

RF Modem Processor INFOSEC

Power Supply GPS Reference Standard

I/O

HW Module(s)

Figure 2-12. Hardware Architecture Framework

The HWModule(s) class inherits the system level attributes from the SCA-CompliantHardware
class. Classes below the HWModule(s) class inherit the attributes of that class. The attributes
are the parameters that define domain-neutral hardware devices, and the values assigned to the
attributes satisfy requirements for a selected implementation. The hardware devices, which are
the physical implementation of these classes, will have values for the relevant attributes based on
a platform’s physical requirements and the procurement performance requirements. Some
attributes are used in the creation of waveform applications and provided in a Device Profile,
readable by CF applications.

The Chassis Class has unique physical, interface, platform power, and external environment
attributes that are not shared with the modules in the chassis.

MSRC-5000SCA
rev. 1.0

3-1

3 SOFTWARE ARCHITECTURE DEFINITION

3.1 OPERATING ENVIRONMENT.

This section contains the requirements of the operating system, middleware, and the CF
interfaces and operations that comprise the OE.

3.1.1 Operating System.

The processing environment and the functions performed in the architecture impose differing
constraints on the architecture. An SCA application environment profile (AEP) was defined to
support portability of waveforms, scalability of the architecture, and commercial viability.
POSIX services are used as a basis for this profile. The notional relationship of the OE and
applications to the SCA AEP is depicted in figure 3-1. The OS shall provide the services
designated as mandatory by the AEP defined in Appendix B. The OS is not limited to providing
the services designated as mandatory by the profile. The CORBA Object Request Broker (ORB)
and the CF are not limited to using the services designated as mandatory by the profile.

Figure 3-1. Notional Relationship of OE and Application to the SCA AEP

Applications

Core Framework

CORBA ORB

D
e
v
i
c
e

D
r
i
v
e
r
s

Applications use CF
for all File access

CORBA
API

DSP- or
ASIC-specific
interface used
for
communications;
can be an
Adapter

OS access
limited to
SCA AEP

OS access
unlimited

OS access
unlimited

OS (function) that supports SCA
AEP.
Unlimited proprietary APIs for
system development.

Any vendor-provided
OS function calls

HW-specific
Device Drivers
may provide access
to device for
Application or OS

MSRC-5000SCA
rev. 1.0

3-2

Applications are limited to using the OS services that are designated as mandatory for the profile.
Applications will perform file access through the CF. (Application requirements are covered in
section 3.2.)

3.1.2 Middleware & Services.

3.1.2.1 CORBA.

The OE shall contain CORBA middleware and services. At a minimum, the ORB and related
software shall comply with Minimum CORBA as specified by the OMG Document orbos/98-05-
13, May 19, 1998.

3.1.2.2 CORBA Extensions.

No extensions and/or services above and beyond Minimum CORBA shall be used except as
specifically identified below.

{The listed extensions are considered important for the architecture to meet its goals; however,
they are not commercially available at the time of this release. When they become readily
available, they will be reconsidered for mandatory inclusion.}

3.1.2.2.1 Naming Service.

CORBA Naming Service may be used. If a CORBA Naming Service is used, the OE should
provide an Interoperable Naming Service as specified by the OMG Document orbos/98-10-11,
October 19, 1998.

As an alternative, software components will include stringified Interoperable Object References
(IORs) in their Software Profile.

3.1.2.2.2 Quality of Service Control.

3.1.2.2.2.1 Real-Time.

The OE should provide the Real-Time CORBA extension as specified by the OMG Document
orbos/98-12-05, December 21, 1998.

3.1.2.2.2.2 Messaging.

CORBA Messaging as specified by the OMG Document orbos/98-05-05, May 18, 1998 should
be provided in order to provide the policy framework used by the Real-Time CORBA extension.

{additional QoS requirements and policies are under evaluation.}

3.1.3 Core Framework.

The CF specification includes a detailed description of the purpose of each interface, the purpose
of each supported operation within the interface, and interface class diagrams to support these
descriptions. The corresponding IDL for the CF can be found in Appendix C.

Figure 3-2 depicts the key elements of the CF and the relationships between these elements. A
DomainManager component manages the software Applications, ApplicationFactories, and
hardware devices (Devices and DeviceManagers) within the system. An Application is a type of
Resource and consists of one to many software Resources. Some of the software Resources may
directly control the system’s internal hardware devices; these Resources are logical Devices.
(For example, a ModemDevice may provide direct control of a modem hardware device such as a
Field Programmable Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC).

MSRC-5000SCA
rev. 1.0

3-3

An I/ODevice may operate as a device driver to provide external access to the system.) Other
software Resources have no direct relationship with a hardware device, but perform application
services for the user. (For example, a NetworkResource may perform a network layer function.
A WaveformLinkResource may perform a waveform specific link layer service.) Each Resource
can potentially communicate with other Resources. Devices are allocated to one or more
hardware devices by the DomainManager based upon various factors including the hardware
devices that the DeviceManager knows about, the current availability of hardware devices, the
behavior rules of a Resource, and the loading requirements of the Resource.

StringConsumer

Application

Core Framework (CF)

Commercial Off-the-Shelf (COTS)

Non-Core Applications

OE

Port PropertySet TestableObjectLifeCycle

Resource

DomainManager

Logger

ResourceFactory

inherits
from

uses

ApplicationFactory

DeviceManager

FileManager

FileSystem

deviceManagers

1..*

Device

0..*
devices

0..* applicationFactories

file
Mgr1..*

applications

0..*

0..*
devices

File

Application

Figure 3-2. Core Framework IDL Relationships

The Resources being managed by the DomainManager are CORBA objects implementing the
Resource interface. Some Resources may be dependent on other Resources. This interface
provides a consistent way of creating up and tearing down any Resource within the system.
These resources can be created by using a ResourceFactory interface or by the Device interface.

The file service interfaces (FileManager, FileSystem, and File) are used for installation and
removal of application files within the system, and for loading and unloading application files on
the various processors that the Devices execute upon.

MSRC-5000SCA
rev. 1.0

3-4

If user security controls are required, then the CORBA context capability shall be used for
setting the user access authorities that are passed along with the CF call. This context
information is used by the CF implementation for verifying user authorization before the CF
operation is performed. The context content and format is implementation specific. In addition,
the file verification mechanism to be used is implementation specific.

3.1.3.1 Base Application Interfaces.

3.1.3.1.1 Port.

3.1.3.1.1.1 Description.

This interface provides operations for managing associations between ports. An application
defines a specific Port type by specifying an interface that inherits the Port interface. An
application establishes the operations for transferring data and control. The application also
establishes the meaning of the data and control values. Whether a particular operation is push or
pull, synchronous or asynchronous, or mono- or bi-directional or uses flow control (e.g., pause,
start, stop), is application-dependent.

The nature of Port fan-in, fan-out, or one-to-one is component dependent.

Note 1: The CORBA specification defines only a minimum size for each basic IDL type. The
actual size of the data type is dependent on the language (defined in the language mappings) as
well as the Central Processing Unit (CPU) architecture used. By using these CORBA basic data
types, portability is maintained between components implemented in differing CPU architectures
and languages.

Note 2: How components' ports are connected is described in the software assembly descriptor
file of the Domain Profile (3.1.3.4).

3.1.3.1.1.2 UML.

Port

connectPort(connect ion : in O bject , name : in st ring) : void

disconnectPort(name : in s tring) : void

<<Interfac e>>

Figure 3-3. Port Interface UML

3.1.3.1.1.3 Types.

3.1.3.1.1.3.1 InvalidPort.
exception InvalidPort { unsigned short errorCode, string msg };

This exception indicates one of the following errors has occurred in the specification of a Port
association:

• ErrorCode 1 means the Port component is invalid (unable to narrow object reference) or illegal object
reference,

• ErrorCode 2 means the Port name is not found (not used by this Port)

MSRC-5000SCA
rev. 1.0

3-5

3.1.3.1.1.3.2 OccupiedPort.
exception OccupiedPort {};

This exception indicates the Port is unable to accept any additional connections.

3.1.3.1.1.4 Attributes.

Not applicable (N/A).

3.1.3.1.1.5 Operations.

3.1.3.1.1.5.1 connectPort.

3.1.3.1.1.5.1.1 Brief Rationale.

Applications require the connectPort operation to establish associations between Ports. Ports
provide channels through which data and/or control pass.

The connectPort operation provides half of a two-way association; therefore two calls are
required to create a two-way association.

3.1.3.1.1.5.1.2 Synopsis.
void connectPort(in Object connection, in string name) raises (InvalidPort,
OccupiedPort);

3.1.3.1.1.5.1.3 Behavior.

The connectPort operation shall cause a consumer/producer component to be associated with its
counterpart component. The connectPort operation establishes only half of the association.
Name is used to clearly identify the type of Port that is being connected to this Port, so that the
CORBA object reference can be narrowed to a specific IDL interface based on the name.

3.1.3.1.1.5.1.4 Returns.

This operation does not return a value.

3.1.3.1.1.5.1.5 Exceptions/Errors.

The InvalidPort exception shall be raised when the Port component passed to connectPort is not
a valid Port component.

The OccupiedPort exception shall be raised when unable to accept the connections because the
Port is already fully occupied.

3.1.3.1.1.5.2 disconnectPort.

3.1.3.1.1.5.2.1 Brief Rationale.

Applications require the disconnectPort operation in order to allow consumer/producer data
components to disassociate themselves from their counterparts (consumer/producer).

3.1.3.1.1.5.2.2 Synopsis.
void disconnectPort (in string name) raises (InvalidPort);

3.1.3.1.1.5.2.3 Behavior.

The disconnectPort operation shall cause a consumer or producer component to be disassociated
from its counterpart component.

MSRC-5000SCA
rev. 1.0

3-6

3.1.3.1.1.5.2.4 Returns.

This operation does not return a value.

3.1.3.1.1.5.2.5 Exceptions/Errors.

The InvalidPort exception shall be raised when the name passed to disconnectPort is not
associated with the Port component.

3.1.3.1.2 LifeCycle.

3.1.3.1.2.1 Description.

The LifeCycle interface defines the generic operations for initializing or releasing instantiated
component-specific data and/or processing elements.

3.1.3.1.2.2 UML.

LifeCycle

initialize() : void
relea seObject() : v oid

<<Interface>>

StringS equence

Figure 3-4. LifeCycle Interface UML

3.1.3.1.2.3 Types.

3.1.3.1.2.3.1 InitializeError.
exception InitializeError { string message; };

This exception indicates an error occurred during component initialization. The message shall
provide additional information describing the reason why the error occurred.

3.1.3.1.2.3.2 ReleaseError.
exception ReleaseError { string message; };

This exception indicates an error occurred during component releaseObject. The message shall
provide additional information describing the reason why the error occurred.

3.1.3.1.2.4 Attributes.

N/A.

3.1.3.1.2.5 Operations.

3.1.3.1.2.5.1 initialize.

3.1.3.1.2.5.1.1 Brief Rationale.

The purpose of the initialize operation is to provide a mechanism to set a component to a known
initial state. (For example, data structures may be set to initial values, memory may be allocated,
hardware components may be configured to some state, etc.)

MSRC-5000SCA
rev. 1.0

3-7

3.1.3.1.2.5.1.2 Synopsis.
void initialize() raises (InitializeError);

3.1.3.1.2.5.1.3 Behavior.

The initialize operation shall be invoked one time for a component, at instantiation. Initialization
behavior is implementation dependent.

3.1.3.1.2.5.1.4 Returns.

This operation does not return a value.

3.1.3.1.2.5.1.5 Exceptions/Errors.

The InitializeError exception shall be raised when an initialization error occurs.

3.1.3.1.2.5.2 releaseObject.

3.1.3.1.2.5.2.1 Brief Rationale.

The purpose of the releaseObject operation is to provide a means by which an instantiated
component may be torn down.

3.1.3.1.2.5.2.2 Synopsis.
void releaseObject() raises (ReleaseError);

3.1.3.1.2.5.2.3 Behavior.

The behavior of this operation is implementation dependent. For example, if the instantiated
component has been created via the ResourceFactory interface, the release operation could
delegate to a ResourceFactory implementation in order to decrement the object reference count
and ultimately tear down the instantiated component.

The component shall release all internal memory allocated during the instantiation.

3.1.3.1.2.5.2.4 Returns.

This operation does not return a value.

3.1.3.1.2.5.2.5 Exceptions/Errors.

A ReleaseError exception shall be raised when a release error occurs.

3.1.3.1.3 TestableObject.

3.1.3.1.3.1 Description.

The TestableObject interface defines a set of operations that can be used to test component
implementations.

3.1.3.1.3.2 UML.

TestableObject

runTest()

<<Interface>>

Figure 3-5. TestableObject Interface UML

MSRC-5000SCA
rev. 1.0

3-8

3.1.3.1.3.3 Types.

3.1.3.1.3.3.1 UnknownTest.
exception UnknownTest {};

This exception indicates the requested test to be performed is unknown by the component.

3.1.3.1.3.4 Attributes.

N/A.

3.1.3.1.3.5 Operations.

3.1.3.1.3.5.1 runTest.

3.1.3.1.3.5.1.1 Brief Rationale.

The runTest operation allows components to be “blackbox” tested. This allows Built-In Test
(BIT) to be implemented as well as provides a mean to isolate faults (both software and
hardware) within the system.

3.1.3.1.3.5.1.2 Synopsis.
long runTest(in unsigned long testNum)
raises UnknownTest;

3.1.3.1.3.5.1.3 Behavior.

The runTest operation shall use the testNum argument to specify the implementation-specific test
to be run. Tests to be implemented by a component are component-dependent and are specified
in the component’s software profile.

3.1.3.1.3.5.1.4 Returns.

The runTest operation shall return result of test performed. The values returned and their
meanings are described in the component’s software profile.

3.1.3.1.3.5.1.5 Exceptions/Errors.

An UnknownTest exception shall be raised when no such test is known by the component.

3.1.3.1.4 PropertySet.

3.1.3.1.4.1 Description.

The PropertySet interface defines configure and query operations to access component
properties/attributes.

MSRC-5000SCA
rev. 1.0

3-9

3.1.3.1.4.2 UML.

Properties

PropertySet

configure(configProperties : in Properties) : void
query(configProperties : inout Properties) : void

<<Interface>>

Figure 3-6. PropertySet Interface UML

3.1.3.1.4.3 Types.

3.1.3.1.4.3.1 UnknownProperties.
exception UnknownProperties {properties invalidProperties; };

This exception indicates a set of properties unknown by the component.

3.1.3.1.4.3.2 InvalidConfiguration.
exception InvalidConfiguration { string msg; Properties invalidProperties};

This exception indicates the configuration of a Component has failed (no configuration at all was
done). The message shall provide additional information describing the reason why the error
occurred. The invalidProperties returned indicate the properties that were invalid.

3.1.3.1.4.3.3 PartialConfiguration.
exception PartialConfiguration { Properties invalidProperties};

This exception indicates the configuration of a Component was partially successful. The
invalidProperties returned indicate the properties that were invalid.

3.1.3.1.4.4 Attributes.

N/A.

3.1.3.1.4.5 Operations.

3.1.3.1.4.5.1 configure.

3.1.3.1.4.5.1.1 Brief Rationale.

The purpose of this operation is to allow id/value pair configuration properties to be assigned to
components implementing this interface.

3.1.3.1.4.5.1.2 Synopsis.
void configure(in Properties configProperties) raises (InvalidConfiguration,
PartialConfiguration);

3.1.3.1.4.5.1.3 Behavior.

The configure operation shall assign the id/value pair passed in the configProperties argument to
the component.

MSRC-5000SCA
rev. 1.0

3-10

3.1.3.1.4.5.1.4 Returns.

This operation does not return a value.

3.1.3.1.4.5.1.5 Exceptions/Errors.

An InvalidConfiguration exception shall be raised when a configuration error occurs preventing
any property configuration on the component.

A PartialConfiguration exception shall be raised when some configuration properties were
successful and some configuration properties were not successful.

3.1.3.1.4.5.2 query.

3.1.3.1.4.5.2.1 Brief Rationale.

The purpose of this operation is to allow a component to be queried to retrieve its properties.

3.1.3.1.4.5.2.2 Synopsis.
void query(inout Properties configProperties) raises (UnknownProperties);

3.1.3.1.4.5.2.3 Behavior.

The query operation shall retrieve a component's requested configuration data. If the
configProperties are zero size then all component properties shall be returned. If the
configProperties are not zero size then only those id/value pairs specified in the configProperties
shall be returned.

3.1.3.1.4.5.2.4 Returns.

This operation does not return a value.

3.1.3.1.4.5.2.5 Exceptions/Errors.

The UnknownProperties exception shall be raised when one or more properties being requested
are not known by the component.

3.1.3.1.5 Resource.

3.1.3.1.5.1 Description.

The Resource interface provides a common API for the control and configuration of a software
component.

The Resource interface inherits from the LifeCycle, PropertySet, and TestableObject interfaces.

The inherited LifeCycle, PropertySet, and TestableObject interface operations are documented in
their respective sections of this document.

The CF Resource interface may also be inherited by other application interfaces as described in
the Software Profile's Software Component Descriptor (SCD) file (see 3.1.3.4).

MSRC-5000SCA
rev. 1.0

3-11

3.1.3.1.5.2 UML.

Resource

s ta rt() : void
s top() : void
getPort(name : in s tring) : Object

<<Int erface >>

inherits
from

LifeC ycle

initialize()
releaseObject()

<<Interface>>

PropertySet

configure()
query()

<<Interface>>

TestableObject

runTes t()

<<Interface>>

Figure 3-7. Resource Interface UML

3.1.3.1.5.3 Types.

3.1.3.1.5.3.1 UnknownPort.
exception UnknownPort { };

This exception is raised if an undefined port is requested.

3.1.3.1.5.3.2 StartError.
exception StartError { string msg };

This exception indicates that an error occurred during an attempt to start the Resource. The
message shall provide additional information describing the reason for the error and the severity
of the error.

3.1.3.1.5.3.3 StopError.
exception StopError { string msg };

This exception indicates that an error occurred during an attempt to stop the Resource. The
message shall provide additional information describing the reason for the error and the severity
of the error.

3.1.3.1.5.4 Attributes.

N/A.

MSRC-5000SCA
rev. 1.0

3-12

3.1.3.1.5.5 Operations.

3.1.3.1.5.5.1 stop.

3.1.3.1.5.5.1.1 Brief Rationale.

The stop operation is provided to command a Resource implementing this interface to stop
internal processing.

3.1.3.1.5.5.1.2 Synopsis.
void stop()raises (StopError);

3.1.3.1.5.5.1.3 Behavior.

The stop operation shall disable all operations for the Resource.

3.1.3.1.5.5.1.4 Returns.

This operation does not return a value.

3.1.3.1.5.5.1.5 Exceptions/Errors.

The StopError exception shall be raised if an error occurs while stopping the resource.

3.1.3.1.5.5.2 start.

3.1.3.1.5.5.2.1 Brief Rationale.

The start operation is provided to command a Resource implementing this interface to start
internal processing.

3.1.3.1.5.5.2.2 Synopsis.
void start()raises (StartError);

3.1.3.1.5.5.2.3 Behavior.

The start operation shall enable operations for the Resource.

3.1.3.1.5.5.2.4 Returns.

This operation does not return a value.

3.1.3.1.5.5.2.5 Exceptions/Errors.

The StartError exception shall be raised if an error occurs while stopping the resource.

3.1.3.1.5.5.3 getPort.

3.1.3.1.5.5.3.1 Brief Rationale.

The getPort operation provides a mechanism to obtain a specific consumer or producer Port. A
Resource may contain zero to many consumer and producer port components. The exact number
is specified in the component’s Software Profile SCD (section 3.1.3.4). These Ports can be
either push or pull types. Multiple input and/or output ports provide flexibility for Applications
and Resources that must manage varying priority levels and categories of incoming and outgoing
messages, provide multi-threaded message handling, or other special message processing.

3.1.3.1.5.5.3.2 Synopsis.
Object getPort(in string name) raises (UnknownPort);

MSRC-5000SCA
rev. 1.0

3-13

3.1.3.1.5.5.3.3 Behavior.

The getPort operations shall return the object reference to the named port as stated in the
Resource's SCD.

3.1.3.1.5.5.3.4 Returns.

The getPort operation shall return the CORBA object reference that matches the input port
name.

3.1.3.1.5.5.3.5 Exceptions/Errors.

The getPort operation shall raise an UnknownPort exception if the port name is invalid.

3.1.3.1.5.5.4 releaseObject.

3.1.3.1.5.5.4.1 Brief Rationale.

The releaseObject operation (of LifeCycle) causes the Resource to terminate execution and
return allocated capabilities to the system. Before terminating, the Resource removes the
message connectivity with its associated components (e. g., consumer Ports, producer Ports,
Loggers, etc.) in the domain.

3.1.3.1.5.5.4.2 Synopsis.
void releaseObject() raises (ReleaseError);

3.1.3.1.5.5.4.3 Behavior.

The Resource shall release (e.g., CORBA Release) all ports that have been connected to the
Resource ports.

The Resource shall release all internal memory allocated during the instantiation of the Resource.

3.1.3.1.5.5.4.4 Returns.

This operation does not return a value.

3.1.3.1.5.5.4.5 Exceptions/Errors.

A ReleaseError shall be raised when the instantiated Resource incurs an error during the release
process.

3.1.3.1.6 ResourceFactory.

3.1.3.1.6.1 Description.

A ResourceFactory is used to create and tear down a Resource. The ResourceFactory interface
is designed after the Factory Design Patterns. The factory mechanism provides client-server
isolation among Resources (e.g., Network, Link, Modem, I/O, etc.) and provides an industry
standard mechanism of obtaining a Resource without knowing its identity. An application is not
required to use ResourceFactories to obtain, create, or tear down resources. A Software Profile
will determine which application ResourceFactories are to be used by the ApplicationFactory.

MSRC-5000SCA
rev. 1.0

3-14

3.1.3.1.6.2 UML.

ResourceFactory

createRes ource(res ourceNumber : in Res ourceNumType, qualifiers : in Properties) : Res ource
releas eRes ource(resourceNumber : in ResourceNumType) : vo id
s hutdown() : void

<<Interfa ce>>

Resource
<<Interface>>Properties

Figure 3-8. ResourceFactory Interface UML

3.1.3.1.6.3 Types.

3.1.3.1.6.3.1 ResourceNumType.

This type defines the identity of a Resource created by the ResourceFactory.

typedef unsigned short ResourceNumType.

3.1.3.1.6.3.2 InvalidResourceNumber.
exception InvalidResourceNumber { string msg };

This exception indicates the resource number does not exist in the Factory. The message shall
provide additional information describing why the resource number was invalid.

3.1.3.1.6.3.3 ShutdownFailure.
exception ShutdownFailure { string msg };

This exception indicates that the shutdown method failed to release the ResourceFactory from
the CORBA environment due to the fact the Factory still contains Resources. The message shall
provide additional information describing why the shutdown failed.

3.1.3.1.6.4 Attributes.

N/A.

3.1.3.1.6.5 Operations.

3.1.3.1.6.5.1 createResource.

3.1.3.1.6.5.1.1 Brief Rationale.

Applications may need to create Resources in another address space (e.g., process space, another
processor, etc.) or without having the ability to directly create the Resource servant (e.g. the
servant may be provided as part of the implementation of a commercial library).

MSRC-5000SCA
rev. 1.0

3-15

3.1.3.1.6.5.1.2 Synopsis.
Resource createResource(in ResourceNumType resourceNumber, in Properties
qualifiers);

The resourceNumber is the identifier for Resource. The qualifiers will vary depending on the
ResourceFactory implementation. The qualifiers passed by the DomainManager are described
in the Resource's Software Profile.

3.1.3.1.6.5.1.3 Behavior.

If the Resource does not exist for the given resourceNumber, a Resource shall be created. A
ResourceFactory, a Resource, or both may use the input qualifiers. The given resourceNumber
shall be assigned to the new Resource and the reference count set to one. If the Resource already
exists, that Resource is returned and the reference count shall be incremented by one.

3.1.3.1.6.5.1.4 Returns.

The createResouce operation shall return a reference to a Resource. A nil CORBA component
reference shall be returned if the operation is unable to create the resource.

3.1.3.1.6.5.1.5 Exceptions/Errors.

N/A.

3.1.3.1.6.5.2 releaseResource.

3.1.3.1.6.5.2.1 Brief Rationale.

In CORBA there is client side and server side representation of a Resource. This operation
provides the mechanism of releasing the Resource in the CORBA environment on the server side
when all clients are through with a specific Resource. The client still has to release its client side
reference of the Resource.

3.1.3.1.6.5.2.2 Synopsis.
void releaseResource(in ResourceNumType resourceNumber) raises
{InvalidResourceNumber);

3.1.3.1.6.5.2.3 Behavior.

For the specified resource, as indicated by the resourceNumber, the reference count shall be
decremented. The Resource shall be torn down and released from the CORBA environment
when the reference count is zero.

3.1.3.1.6.5.2.4 Returns.

This operation does not return a value.

3.1.3.1.6.5.2.5 Exceptions/Errors.

The InvalidResourceNumber exception shall be raised if an invalid resourceNumber is received.

3.1.3.1.6.5.3 shutdown.

3.1.3.1.6.5.3.1 Brief Rationale.

In CORBA there is client side and server side representation of a ResourceFactory. This
operation provides the mechanism for releasing the ResourceFactory from the CORBA
environment on the server side. The client has the responsibility to release its client side
reference of the ResourceFactory.

MSRC-5000SCA
rev. 1.0

3-16

3.1.3.1.6.5.3.2 Synopsis.
void shutdown()raises {ShutdownFailure);

3.1.3.1.6.5.3.3 Behavior.

The shutdown operation shall cause the ResourceFactory to be torn down and released from the
CORBA environment when no Resources exist in the ResourceFactory.

3.1.3.1.6.5.3.4 Returns.

This operation does not return a value.

3.1.3.1.6.5.3.5 Exceptions/Errors.

N/A.

3.1.3.2 Framework Control Interfaces.

Framework control within a Domain is accomplished by five interfaces: Application,
ApplicationFactory, DomainManager, DeviceManager, and Device. The implementation of the
Application, ApplicationFactory, and DomainManager interfaces are coupled together and must
be delivered together as a complete domain management implementation. The DeviceManager
and Device interfaces are used to manage devices in the domain. DeviceManager and Device
can be implemented together by the same vendor or separately by different vendors. Framework
Control Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.2.1 Application.

3.1.3.2.1.1 Description.

The Application class provides the interface for the control, configuration, and status of an
instantiated Application in the domain.

The Application interface class inherits the IDL interface of CF Resource. A created application
instance may contain CF Resource components and/or non-CORBA components. If the created
Application contains CF Resource components, the PropertySet and TestableObject operations
are delegated to the HCI Ports contained within the application instance.

The Application interface releaseObject operation provides the interface to release the
computing resources allocated during the instantiation of the Application, and de-allocate the
devices associated with Application instance.

An instance of an Application is returned by the create operation of an instance of the
ApplicationFactory class.

MSRC-5000SCA
rev. 1.0

3-17

3.1.3.2.1.2 UML.

Resource
<<Interfa ce>>

Applica tion
profile : s tring
name : s tring

<<Interfa ce>>

Figure 3-9. Application Interface UML

3.1.3.2.1.3 Types.

N/A.

3.1.3.2.1.4 Attributes.

3.1.3.2.1.4.1 profile.

This profile attribute contains the Software Profile (3.1.3.4). CORBA-capable and non-CORBA-
capable components have Profile files.

readonly attribute string profile;

3.1.3.2.1.4.2 name.

This name attribute contains the name of the created Application. The ApplicationFactory
interface’s create operation name parameter provides the name content.

readonly attribute string name;

3.1.3.2.1.5 General Class Behavior.

The Application shall delegate the implementation of the inherited CF Resource operations,
except releaseObject, to the Application’s Resource component(s) of the Application instance.
The getPort operation shall return the Application’s ports on the Software Profile(s).

3.1.3.2.1.6 Operations.

3.1.3.2.1.6.1 releaseObject.

3.1.3.2.1.6.1.1 Brief Rationale.

The releaseObject operation terminates execution of the Application, returns all allocated
computing resources, and de-allocates the devices associated with Application. Before
terminating, the Application removes the message connectivity with its associated Applications
(e. g., Ports, Resources, and Loggers) in the domain.

3.1.3.2.1.6.1.2 Synopsis.
void releaseObject() raises (ReleaseError);

MSRC-5000SCA
rev. 1.0

3-18

3.1.3.2.1.6.1.3 Behavior.

For each Application component, the releaseObject operation shall release the component by
utilizing the Resource's releaseObject operation. If the component was created by a
ResourceFactory component, the Resource shall be released utilizing the ResourceFactory
releaseResource operation. The ResourceFactory components shall be shutdown utilizing the
ResourceFactory shutdown operation.

For each allocated Device, the releaseObject operation shall terminate all processes / tasks of the
Application components utilizing the Device’s terminate operation.

For each allocated Device, the releaseObject operation shall de-allocate the memory associated
with Application component instances utilizing the Device’s unload operation.

The releaseObject operation shall de-allocate any internal Application memory associated with
the Application instance.

The releaseObject operation shall de-allocate the Devices that are associated with the
Application being released. The actual devices deallocated (Device::deallocateCapacity) shall
reflect changes in capacity based upon component capacity requirements deallocated from them,
which may also cause state changes for the Devices.

The Application shall release all client component references to the Application components.

The Application shall release all component references to itself maintained by the Application’s
ResourceFactory.

Ports shall be disconnected from other Ports that have been connected based upon the software
profile.

For components (e.g., Resource, ResourceFactory) that are registered with Naming Service, the
releaseObject operation shall unregister those components from Naming Service.

If security access control is being used in the system, then the releaseObject operation shall
remove the Application's Ports' access setups in the access control database.

The Application shall, prior to successful Application release, log an Administrative event with
the DomainManager's Logger.

The Application shall, upon unsuccessful Application release, log an Alarm event with the
DomainManager's Logger.

The following steps demonstrate one scenario of the Application’s behavior for the release of an
Application that contains ResourceFactory behavior:

1. Client invokes release operation.

2. Release the Application components.

3. Shutdown the ResourceFactory components.

4. Terminate the component’s processes.

5. Unload the component’s executable images.

MSRC-5000SCA
rev. 1.0

3-19

6. Change the state of the associated device entries in the Domain Profile to be
available, along with device(s) memory utilization availability and processor
utilization availability based upon the Device Profiles and Software Profile.

7. Log an Event indicating that the Application was either successfully or unsuccessfully
released.

Figure 3-10 is a collaboration diagram depicting the behavior as described above.

 : Application

 : Device

 : Logger

 : C omm User

 : ResourceFactory

6: deallocateCapacity(in DataType)

4: terminate(in ProcessID_Type)
5: unload(in string)

7: logData(in string, in string, in unsigned

2: releaseResource(in
3: shutdown()

1: release()

Figure 3-10. Application Behavior

3.1.3.2.1.6.1.4 Returns.

This operation does not return a value.

3.1.3.2.1.6.1.5 Exceptions/Errors.

A ReleaseError exception shall be raised when the releaseObject operation unsuccessfully
releases the Application components due to internal processing errors.

3.1.3.2.2 ApplicationFactory.

3.1.3.2.2.1 Description

The ApplicationFactory interface class provides an interface to request the creation of a specific
type of Application in the domain.

The ApplicationFactory interface class is designed using the Factory Design Pattern. The
Software Profile determines the type of Application that is created by the ApplicationFactory.

MSRC-5000SCA
rev. 1.0

3-20

3.1.3.2.2.2 UML.

ApplicationFactory

name : s tring
s oftwareProfile : String

create(name : in s tring, initConfiguration : in Properties , deviceA s s ignments : in DeviceA s s ignmentSequence) : A pplication

<<Interfa ce>>

Application
<<Interface>>

StringSequence

Figure 3-11. ApplicationFactory UML

3.1.3.2.2.3 Types.

3.1.3.2.2.3.1 DeviceAssignmentType.

DeviceAssignmentType defines a structure that associates a component with the Device upon
which the component must execute.

Struct DeviceAssignmentType

{
string componentID
string assignedDeviceID

}

3.1.3.2.2.3.2 DeviceAssignmentSequence.

The IDL sequence, DeviceAssignmentSequence, provides a unbounded sequence of 0..n of
DeviceAssignmentType.

Typedef sequence<DeviceAssignmentType>DeviceAssignmentSequence;

3.1.3.2.2.3.3 exception CreateApplicationRequestError.
exception CreateApplicationRequestError

{
DeviceAssignmentSequence invalidAssignment;

}

This exception is raised when the parameter DeviceAssignmentSequence contains one (1) or
more invalid Application component-to-device assignment(s).

3.1.3.2.2.3.4 exception CreateApplicationError.
exception CreateApplicationError

{
StringSequence errorMessages;

}

This exception is raised when the create request is valid but the Application is unsuccessfully
instantiated due to internal processing errors.

MSRC-5000SCA
rev. 1.0

3-21

3.1.3.2.2.4 Attributes.

3.1.3.2.2.4.1 name.

The name attribute identifies the type of Application that can be instantiated by the
ApplicationFactory.

readonly attribute string name;

3.1.3.2.2.4.2 SoftwareProfile.

The SoftwareProfile attribute contains the Software Profile for the Application that can be
created by the ApplicationFactory.

readonly attribute string softwareProfile;

3.1.3.2.2.5 Operations.

3.1.3.2.2.5.1 create.

3.1.3.2.2.5.1.1 Brief Rationale.
This operation is used to create an Application within the system domain.

The create operation provides a client interface to request the creation of an Application on client
requested device(s) or the creation of an Application in which the ApplicationFactory determines
the necessary device(s) required for instantiation of the Application.

3.1.3.2.2.5.1.2 Synopsis.
Application create(in string name, in Properties initConfiguration, in
DeviceAssignmentSequence deviceAssignments) raises (CreateApplicationError,
CreateApplicationRequestError);

3.1.3.2.2.5.1.3 Behavior.

If the input parameter deviceAssignments sequence length is zero (0), the ApplicationFactory
shall determine the necessary devices to allocate for the creation of the Application using the
Software Profile's software assembly descriptor (SAD). Each application will have a SAD.

An Application can be comprised of one or more components (e.g., Resources, Devices, etc.).
The SAD contains Software Package Descriptors (SPDs) for each Application component. The
SPD specifies the Device implementation criteria for loading dependencies (processor kind, etc.)
and processing capacities (e.g., memory, process for an application component. The create
operation shall use the SAD SPD implementation element to locate candidate devices capable of
loading and executing Application components.

If deviceAssignments (not zero length) are provided, the ApplicationFactory shall verify each
device assignment, for the specified component, against the component’s SPD implementation
element.

The create operation shall allocate (Device::allocateCapacity) component capacity requirements
against candidate devices to determine which candidate devices satisfy all SPD implementation
criteria requirements and SAD partitioning requirements (e.g, components HostCollocation,
etc.). Only devices that have been granted successful capacity allocations shall be used for
loading and executing Application components, or used for data processing. The actual devices
chosen shall reflect changes in capacity based upon component capacity requirements allocated
to them, which may also cause state changes for the Devices.

MSRC-5000SCA
rev. 1.0

3-22

The create operation shall load the Application components (including all of the Application-
dependent components) to the chosen device(s).

The create operation shall execute the Application components (including all of the Application-
dependent components) using the entry points dictated in the SPD's implementation code
element. Parameters passed to entry points will be (/ DomainName / NodeName / [other context
sequences]) / ComponentName_UniqueIdentifier . The unique identifier is determined by the
implementation, unique to each node. The create operation uses this naming string to form
component names that need to be retrieved from Naming Service. (See also section 3.2.1.3.)
Due to the dynamics of bind and resolve to Naming Service, the create operation shall provide
sufficient attempts to retrieve component object references from Naming Service prior to
generating an exception.

The create shall initialize an Application component provided the component implements the CF
LifeCycle interface.

The create shall configure an Application component provided the component implements the
CF PropertySet interface. The configure operation input parameters can either be the
configuration properties specified by the ApplicationProfile or the client (user) properties passed
in the create call.

When client Application properties are supplied in the create call, the ApplicationFactory shall
use the client supplied properties for the configure call. When the client does not supply
properties, the create operation shall configure the component using properties supplied by the
SCD if these properties have values associated with them.

The create operation shall interconnect Application components' (Resources' or Devices') ports
in accordance with the SAD. It shall be possible to obtain Ports in accordance with the SAD via
CF Resource::getPort operation. It shall be possible to obtain a CF Resource in accordance with
the SAD via the CORBA Naming Service, ResourceFactory, or a stringified IOR. The
ResourceFactory can be obtained by using the CORBA NamingService or a stringified IOR as
stated in the SAD.

The ApplicationFactory shall pass, with invocation of the ResourceFactory createResource
operation, all the ResourceFactory configuration properties as dictated by the SAD.

The dependencies to Logger, File, Device, and CORBA NamingService will show up as
connections in the SAD.

If creation of components needs to be authenticated, then the create operation shall use an
authentication service before performing any other operations.

If port connections between components need to be authenticated, then the create operation shall
use an authentication service before connecting Ports together.

If port connections between components need to be access-controlled during execution, then the
create operation shall update an access control database.

If the Application is successfully created, the ApplicationFactory shall return an Application
component reference for the created Application. A sequence of created Application references
can be obtained using the DomainManager getApplications operation.

MSRC-5000SCA
rev. 1.0

3-23

The ApplicationFactory shall, upon successful Application creation, log an Administrative event
with the DomainManager's Logger.

The ApplicationFactory shall, upon unsuccessful Application creation, log an Alarm event with
the DomainManager's Logger.

The following steps demonstrate one scenario of the ApplicationFactory’s behavior for the
creation of an Application:

1. Client invokes the create operation.

2. Call security guard service for verification of necessary privilege (if required).

3. Evaluate the Domain Profile for available Devices that meet the Application’s
memory and processor requirements, available Dependent Applications (e.g., I/O or
Utility resources), and dependent libraries needed by the Application. Create an
ApplicationProfile instance if the requested Application can be created. Update the
Device(s) memory and processor utilization.

4. Allocate the Device(s) memory and processor utilization.

5. Load the Application components on the devices using the appropriate Device(s)
interface provided the Application component hasn’t already been loaded.

6. Execute the Application components on the devices using the appropriate Device
interface as indicated by the ApplicationProfile.

7. Obtain the component reference (Resource or ResourceFactory) as described by the
SAD.

8. If the component obtained from CORBA Naming Services is a ResourceFactory as
indicated by the SAD, then narrow the component reference to be a ResourceFactory
component.

9. If the component is an ResourceFactory, then create a Resource using the
ResourceFactory interface.

10. If the components obtained from Naming Services are Resources supporting the
Resource interface as indicated by the SCDs, then narrow the components reference
to be Resource components.

11. If the ApplicationProfile dictates startup self tests the ApplicationFactory invokes the
runTest operation of the Application.

12. Initialize the Application.

13. Configure the Application.

14. Get ports for the resources in order to interconnect the Resources' ports together.

15. Call security guard service for verification of necessary privilege (if required).

16. Connect the ports that interconnect the Resources’ ports together.

17. Notify the client that the Application was instantiated successfully.

Figure 3-12 is a collaboration diagram depicting the behavior as described above.

MSRC-5000SCA
rev. 1.0

3-24

 : ApplicationFactory

Comm user

CORBANaming
Service

Domain
Profile

 : Logger

8: _narrow()
9: createResource(in
ResourceNumType,in
DataType)

4: allocateCapacity(inout DataType)
5: load(in FileSystem, in string)
6: execute(in string, in Properties 10: _narrow()

11: runTest(in unsigned long)
12: initialize()
13: configure(in DataType)
14: getPort(in string)

7: Obtain component
reference per SAD
(Resource or
ResourceFactory)

2: IF required – call security
guard service to verify
necessary privilege.

3: Evaluate & Obtain
Application Profile Instance

17: logData(in string, in string,
in unsigned short)

16: Connect the ports that
interconnect the Resources

1: create(in string, in Properties, in
DeviceAssignmentSequence)

 : Resource

Security Guard
Service

15: IF required – call
security guard service to
verify necessary privilege.

Security Guard
Service : Device

 : ResourceFactory

Producer
: Port

Figure 3-12. ApplicationFactory Behavior

3.1.3.2.2.5.1.4 Returns.

This operation returns a duplicated Application reference for the created Application.

3.1.3.2.2.5.1.5 Exceptions/Errors.

The create operation shall raise the CreateApplicationRequestError exception when the
parameter DeviceAssignmentSequence contains one (1) or more invalid Application component
to device assignment.

The create operation shall raise the CreateApplicationError exception when the create request is
valid but the Application can not be successfully instantiated due to internal processing error(s).

3.1.3.2.3 DomainManager.

3.1.3.2.3.1 Description.

The DomainManager interface is for the control and configuration of the system domain.

The DomainManager interface can be logically grouped into three categories: Human Computer
Interface (HCI), Registration, and CF administration.

The HCI operations are used to configure the domain, get the domain’s capabilities (Devices and
Applications), and initiate maintenance functions. Host operations are performed by an HCI
client capable of interfacing to the DomainManager.

The registration operations are used to register / unregister DeviceManagers and
DeviceManager’s Devices and Applications at startup or during run-time for dynamic device and
Application extraction and insertion.

The administration operations are used to access the interfaces of registered DeviceManagers
and FileManagers.

MSRC-5000SCA
rev. 1.0

3-25

3.1.3.2.3.2 UML.

DomainManager
deviceM anage rs : DeviceM ana gerS equenc e
applic ations : A pplicationSe quence
applicationFactories : A pplicationFactorySequence
fileM gr : FileM anager

reg is terDevic e(reg is t eringDevice : in Device) : vo id
reg is t erDevic eMa nager(de vic eMgr : in D eviceM ana ger) : void
unre gis terDeviceM anager(deviceM gr : in D ev ice M ana ger) : vo id
unre gis terDevice(unre gis terin gDe vic e : in Device) : vo id
ins tallA pplication(profileFileName : in s tring) : void
unins ta llA pplica tion(a pplica tionID : in s tring) : vo id

<<Interface>>

DeviceManager
<<Interface>>

FileManager
<<Interface>>

uses

Device
<<Interface>>

InvalidF ileName
<<Exception>>

InvalidObjectReference
<<Exception>>

InvalidProfile
<<Excep tion>>Application

<<Interface>>

ApplicationFactory
<<Interface>>

Figure 3-13. DomainManager Interface UML

3.1.3.2.3.3 Types.

3.1.3.2.3.3.1 exception ApplicationInstallationError.

This exception type is raised when an Application installation has not completed correctly.

exception ApplicationInstallationError {};

3.1.3.2.3.3.2 InvalidIdentifier.

This exception indicates an application identifier is invalid.

exception InvalidIdentifier {};

3.1.3.2.3.3.3 DeviceManagerSequence.

This type defines an unbounded sequence of CF DeviceManager(s).

Typedef sequence <CF::DeviceManager> DeviceManagerSequence

3.1.3.2.3.3.4 ApplicationSequence.

This type defines an unbounded sequence of CF Application(s).

Typedef sequence <CF::Application> ApplicationSequence

3.1.3.2.3.3.5 ApplicationFactorySequence.

This type defines an unbounded sequence of CF ApplicationFactory(s).

Typedef sequence <CF::ApplicationFactory> ApplicationFactorySequence

3.1.3.2.3.4 Attributes.

3.1.3.2.3.4.1 deviceManagers.

The deviceManagers attribute is read-only containing a sequence of registered DeviceManagers
in the domain. If there are no registered DeviceManagers, the DomainManager shall return a
DeviceManagerSequence with the sequence length set to 0. The DomainManager shall log an
Administrative event with the DomainManager's Logger when the deviceManagers attribute is
obtained.

MSRC-5000SCA
rev. 1.0

3-26

readonly attribute DeviceManagerSequence deviceManagers;

3.1.3.2.3.4.2 applications.

The applications attribute is read-only containing a sequence of instantiated Applications in the
domain. If there are no instantiated Applications, the DomainManager shall return an
ApplicationSequence with the sequence length set to 0. The DomainManager shall log an
Administrative event with the DomainManager's Logger when the applications attribute is
obtained.

readonly attribute ApplicationSequence applications;

3.1.3.2.3.4.3 applicationFactories.

The applicationFactories attribute is read-only containing a sequence of ApplicationFactories in
the domain. If there are no instantiated ApplicationFactories in the domain, the
DomainManager shall return an ApplicationFactorySequence with the sequence length set to 0.
The DomainManager shall log an Administrative event with the DomainManager's Logger
when the applicationFactories attribute is obtained.

readonly attribute ApplicationFactorySequence
applicationFactories;

3.1.3.2.3.4.4 fileMgr.

The fileMgr attribute is read only containing the mounted FileSystems in the domain. The
DomainManager shall log an Administrative event with the DomainManager's Logger when the
fileMgr attribute is obtained.

readonly attribute FileManager fileMgr;

3.1.3.2.3.5 General Class Behavior.

During component construction the DomainManager shall register itself with the CORBA
Naming Service if available. During Naming Service registration the DomainManager shall
create a naming context of "/Domain_Name" and bind the DomainManager’s name with the
created context. (If the CORBA Naming Service is not provided in an OE, DomainManager
clients (e.g., DeviceManager) will have stringified IORs in their software profile entry in the
Domain Profile.)

The DomainManager shall maintain a Logger component reference for logging.

The DomainManager shall create its own FileManager component that consists of all registered
DeviceManager’s FileSystems.

3.1.3.2.3.6 Operations.

3.1.3.2.3.6.1 registerDeviceManager.

3.1.3.2.3.6.1.1 Brief Rationale.

This operation is used to register a DeviceManager and its Device(s). Software profiles can also
be obtained from the DeviceManager's FileManager.

3.1.3.2.3.6.1.2 Synopsis.
void registerDeviceManager(in DeviceManager deviceMgr) raises (
CF::InvalidObjectReference);

MSRC-5000SCA
rev. 1.0

3-27

3.1.3.2.3.6.1.3 Behavior.

The registerDeviceManager operation shall verify that the input parameter, deviceMgr, is a not a
nil CORBA component reference.

The registerDeviceManager operation shall obtain the DeviceManager Devices using the CF
DeviceManager interface.

For each Device the registerDeviceManager operation shall obtain the attributes for the Device
using the CF Device interface. The Device attributes contain the Device Profile and State
information.

The registerDeviceManager operation shall obtain all the Software profiles from the registering
DeviceManager's FileSystems.

The registerDeviceManager operation shall mount all DeviceManager’s FileSystems to its
FileManager. The mounted FileSystem names shall be unique and of the format:
“/DomainName/HostName/FileSystemName”.

The registerDeviceManager operation shall, upon unsuccessful DeviceManager registration, log
an Alarm event with the DomainManager's Logger.

The following UML sequence diagram (figure 3-14) illustrates the DomainManager's behavior
for the registerDeviceManager operation.

 :
DeviceManager

 :
DomainManager

 : Logger : Device

registerDeviceManager(in string, in deviceManager)

getDevices()

getProfile(s)

logData(in string, in string, in unsigned short)

getFileManager()

getProfile(s)

Figure 3-14. DomainManager Sequence Diagram for RegisterDeviceManager Operation

MSRC-5000SCA
rev. 1.0

3-28

3.1.3.2.3.6.1.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.1.5 Exceptions/Errors.

The CF InvalidObjectReference exception shall be raised by the registerDeviceManager
operation when the input parameter DeviceManager contains an invalid reference to a
DeviceManager interface.

3.1.3.2.3.6.2 registerDevice.

3.1.3.2.3.6.2.1 Brief Rationale.

This operation is used to register a device for a specific DeviceManager in the
DomainManager's Domain Profile.

The registering device could have been automatically detected by the DeviceManager or by the
installation of a new device profile to the DeviceManager’s file system by an installer
application. For either case, the DeviceManager registers the Device with the DomainManager.

3.1.3.2.3.6.2.2 Synopsis.
void registerDevice(in Device registeringDevice) raises (
CF::InvalidObjectReference);

3.1.3.2.3.6.2.3 Behavior.

The registerDevice operation shall verify the input device is a not a nil CORBA component
reference.

The registerDevice operation shall verify the Device’s parent DeviceManager is a valid
registered DeviceManager.

The registerDevice operation shall upon successful device registration, log an Administrative
event with the DomainManagers Logger.

The registerDevice operation shall, upon unsuccessful device registration, log an Alarm event
with the DomainManager's Logger.

The following UML sequence diagram (figure 3-15) illustrates the DomainManager's behavior
for the registerDevice operation.

MSRC-5000SCA
rev. 1.0

3-29

 :
DomainManager

 : Logger :
DeviceManager

 : Device :
DeviceManager

registerDevice(in UUID_String, in Device)

logData(in string, in string, in unsigned short)

getProfile

getParentDevice()

getIdentifier()

getIdentifier()

Figure 3-15. DomainManager Sequence Diagram for RegisterDevice Operation

3.1.3.2.3.6.2.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.2.5 Exceptions/Errors.

The CF InvalidObjectReference exception shall be raised by the registerDevice operation when
input parameter registeringDevice contains an invalid reference to a device interface.

3.1.3.2.3.6.3 installApplication.

3.1.3.2.3.6.3.1 Brief Rationale.

This operation is used to install new Application software in the DomainManager's Domain
Profile.

An installer application typically invokes this operation when it has completed the installation of
a new Application into the domain.

3.1.3.2.3.6.3.2 Synopsis.
void installApplication(in string profileFileName) raises (InvalidProfile,
CF::InvalidFileName, ApplicationInstallationError);

3.1.3.2.3.6.3.3 Behavior.

The profileFileName is the absolute path of the Software Profile.

The installApplication operation shall verify the new Software Profile exists in the main
FileManager repository and all the files the Application is dependent on are also resident.

The registerApplication operation shall add the Software Profile entry into the
DomainManager's Domain Profile.

The installApplication operation shall, upon successful Application installation, create an
ApplicationFactory and log an Administrative event with the DomainManager's Logger.

MSRC-5000SCA
rev. 1.0

3-30

The installApplication operation shall, upon unsuccessful application installation, log an Alarm
event with the DomainManager's Logger.

3.1.3.2.3.6.3.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.3.5 Exceptions/Errors.

The CF InvalidProfile exception shall be raised by the installApplication operation when the
input parameter profileFileName is invalid.

The CF InvalidFileName exception shall be raised by the installApplication operation when the
input Software Profile file name is invalid.

The ApplicationInstallationError exception shall be raised by the installApplication operation
when the installation of the Application file(s) was not successfully completed.

3.1.3.2.3.6.4 unregisterDeviceManager.

3.1.3.2.3.6.4.1 Brief Rationale.

This operation is used to unregister a DeviceManager component from the DomainManager’s
Domain Profile. A DeviceManager may be unregistered during run-time for dynamic extraction
or maintenance of the DeviceManager.

3.1.3.2.3.6.4.2 Synopsis.
void unregisterDeviceManager(in DeviceManager deviceMgr) raises (
CF::InvalidObjectReference);

3.1.3.2.3.6.4.3 Behavior.

The unregisterDeviceManager operation shall unregister a DeviceManager component from the
DomainManager.

The unregisterDeviceManager operation shall verify all Devices that are associated with the
DeviceManager are in an Administrative Locked State prior to unregistering the
DeviceManager.

The unregisterDeviceManager operation shall release all device(s) associated with the
DeviceManager that is being unregistered.

The unregisterDeviceManager operation shall unmount all DeviceManager’s FileSystems from
its File Manager.

The unregisterDeviceManager operation shall, upon the successful unregistration of a
DeviceManager, log an Administrative event with the DomainManager's Logger.

The unregisterDeviceManager operation shall, upon unsuccessful unregistration of a
DeviceManager, log an Alarm event with the DomainManager's Logger.

3.1.3.2.3.6.4.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.4.5 Exceptions/Errors.

The CF InvalidAdminState exception shall be raised by the unregisterDeviceManager operation
when any of the DeviceManager's Devices are not in an Administrative Locked State.

MSRC-5000SCA
rev. 1.0

3-31

The CF InvalidObjectReference exception shall be raised by the unregisterDeviceManager
operation when the input parameter DeviceManager contains an invalid reference to a
DeviceManager interface.

3.1.3.2.3.6.5 unregisterDevice.

3.1.3.2.3.6.5.1 Brief Rationale.

This operation is used to remove a device entry from the DomainManager for a specific
DeviceManager.

3.1.3.2.3.6.5.2 Synopsis.
void unregisterDevice(in Device unregisteringDevice) raises (
CF::InvalidObjectReference);

3.1.3.2.3.6.5.3 Behavior.

The unregisterDevice operation shall remove a device entry from the DomainManager’s Domain
Profile for a registered DeviceManager.

The unregisterDevice operation shall verify the Device is in an Administrative Lock State prior
to unregistering the Device.

The unregisterDevice operation shall release the DomainManager-maintained Device CORBA
object reference.

The unregisterDevice operation shall, upon the successful unregistration of a Device, log an
Administrative event with the DomainManager's Logger.

The unregisterDevice operation shall, upon unsuccessful unregistration of a Device, log an
Alarm event with the DomainManager's Logger.

3.1.3.2.3.6.5.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.5.5 Exceptions/Errors.

The CF InvalidAdminState exception shall be raised by the unregisterDevice operation when the
Device is not in an Administrative Lock State.

The CF InvalidObjectReference exception shall be raised by the unegisterDevice operation when
the input parameter contains an invalid reference to a Device interface.

3.1.3.2.3.6.6 uninstallApplication.

3.1.3.2.3.6.6.1 Brief Rationale.

This operation is used to uninstall an ApplicationFactory in the DomainManager’s Domain
Profile.

An installer application (section 3.2.2.1.1) typically invokes this operation when removing an
ApplicationFactory from the domain.

3.1.3.2.3.6.6.2 Synopsis.
void uninstallApplication(in String ApplicationID);

MSRC-5000SCA
rev. 1.0

3-32

3.1.3.2.3.6.6.3 Behavior.

The uninstallApplication operation shall remove all files associated with the ApplicationFactory
and Software Profile.

The uninstallApplication operation shall tear down the ApplicationFactory.

The uninstallApplication operation shall, upon successful uninstall of an Application, log an
Administrative event with the DomainManager’s Logger.

The uninstallApplication operation shall, upon unsuccessful uninstall of an Application, log an
Alarm event with the DomainManager’s Logger.

The uninstallApplication operation shall not allow any new create requests for this
ApplicationFactory.

3.1.3.2.3.6.6.4 Returns.

This operation does not return a value.

3.1.3.2.3.6.6.5 Exceptions/Errors.

The InvalidIdentifier exception shall be raised when the ApplicationID is invalid.

3.1.3.2.4 Device.

3.1.3.2.4.1 Description.

This interface defines the capabilities and attributes for any logical device in the domain. A
logical device is an abstraction of a hardware device. There may be many logical devices per
hardware device within the system. Alternately, the logical device may not necessarily represent
actual hardware in the system. This is analogous to the loopback logical device in TCP/IP,
which appears to the operating system as a network interface device, yet it’s not a driver for
hardware. The interface for a Device is based upon its properties, which are:

1. Device Profile – This XML profile defines the kind of hardware device and the
applicable attributes for type of device. The Device Profile also indicates if the
device has load and execute behavior and the attributes that can be queried and
configured.

2. Software Profile – This XML profile defines the logical device capabilities (data
ports, configure attributes, status attributes, etc.) which could be a subset of the
hardware capabilities.

3. State Management & Status Attributes - This information is based upon the X.731
INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION -
SYSTEMS MANAGEMENT: STATE MANAGEMENT FUNCTION. The identical
text is also published as ISO/IEC International Standard 10164-2.

4. Capacity Attributes – This information is the set of capacity attributes (e.g., memory,
performance, etc.) for a device. In order to use a device certain capacities have to be
obtained from the Device. The capacity attributes will vary among devices.

The Device is responsible for loading and executing software on a processor if it has loading and
execution capabilities.

MSRC-5000SCA
rev. 1.0

3-33

3.1.3.2.4.2 UML.

Device
usageState : UsageType
adminSta te : A dminType
operationalState : OperationalType
identifier : s tring
softwareProfile : s tring
label : s tring
parent Device : Device
devices : DeviceSequence

terminate(process Id : in Process ID_Type) : void
execute(functionName : in s tring , parameters : in Properties) : Process ID_Type
executeProcess (fs : in FileSys tem, fileName : in s tring , parameters : in Properties) : Process ID_Type
load(fs : in FileSys tem, fileName : in s tring, loadKind : in LoadType) : void
unload(fileName : in s tring) : void
alloc ate Capac it y(ca pacity : inout Da taTy pe) : vo id
deallocateCapacity(capacity : in DataType) : void
addDev ice (as sociat edDevice : in De vic e) : vo id
removeDevice(as sociatedDevice : in Device) : void

<<Interface>>

inherits

FileSystem
<<Interface>>

uses

Resource
<<Interface>>

DataType DeviceSequence
InvalidFileName

<<Exception>>

Figure 3-16. Device Interface UML

3.1.3.2.4.3 Types.

3.1.3.2.4.3.1 InvalidProcess Exception.

This exception indicates that a process with that ID does not exist on this device.

exception InvalidProcess {};

3.1.3.2.4.3.2 InvalidFunction Exception.

This exception indicates that a function with that name hasn’t been loaded on this device.

exception InvalidFunction {};

3.1.3.2.4.3.3 DeviceNotCapable Exception.

This exception indicates that the device is not capable of the behavior being attempted such as
execute.

exception DeviceNotCapable {};

MSRC-5000SCA
rev. 1.0

3-34

3.1.3.2.4.3.4 InvalidCapacity Exception.

This exception indicates that the capacity is unknown by this device or the capacity data value is
invalid (wrong type).

exception Invalid Capacity {string msg;};

3.1.3.2.4.3.5 CapacityExceeded Exception.

This exception indicates that the capacity allocation has been exceeded.

exception CapacityExceeded {};

3.1.3.2.4.3.6 AdminType.

This is a CORBA IDL enumeration type that defines an object's administration states. The
administration state indicates the permission to use or prohibition against using the Resource.

enum AdminType
 {
 LOCKED,
 SHUTTING_DOWN,
 UNLOCKED
 };

3.1.3.2.4.3.7 OperationalType.

This is a CORBA IDL enumeration type that defines an object's Operational states. The
Operational state indicates whether or not the object is working or not.

enum OperationalType
 {
 ENABLED,
 DISABLED
 };

3.1.3.2.4.3.8 UsageType.

This is a CORBA IDL enumeration type that defines the object's Usage states. This state
indicates whether or not an object is actively in use at a specific instant, and if so, whether or not
it has spare capacity for additional users at that instant.

enum UsageType
 {
 IDLE,
 ACTIVE,
 BUSY
 };

3.1.3.2.4.3.9 ProcessID_Type.

This defines the process number within the system. Process number is unique to the Processor
operating system that created the process.

typedef unsigned long ProcessID_Type;

3.1.3.2.4.3.10 LoadType.

This type defines the type of load to be performed. The loading of the software can be
performed as a driver, in the OS kernel memory, or as a relocatable object.

MSRC-5000SCA
rev. 1.0

3-35

enum LoadType
 {
 KERNEL_MODULE,
 RELOCATABLE_OBJECT,
 DRIVER
 };

3.1.3.2.4.4 Attributes.

3.1.3.2.4.4.1 UsageState.

This state indicates whether or not a device is actively in use at a specific instant, and if so,
whether or not it has spare capacity for additional users at that instant.

readonly attribute UsageType usageState;

3.1.3.2.4.4.2 AdminState.

The administration state indicates the permission to use or prohibition against using the device.
Some of the administration states are settable, but the shutting down state is not settable.

attribute AdminType adminState;

3.1.3.2.4.4.3 OperationalState.

The operational state indicates whether or not the Device is working or not.

attribute OperationalType operationalState;

3.1.3.2.4.4.4 Identifier.

The identifier attribute is the unique identifier for a device instance.

readonly attribute string identifier;

3.1.3.2.4.4.5 SoftwareProfile.

The profile attribute is the XML software definition for this logical device.

readonly attribute string softwareProfile;

3.1.3.2.4.4.6 Label.

The Label attribute is the label for this device. The attribute could convey location information
within the system (e.g., audio1, serial1, etc.).

readonly attribute string label;

3.1.3.2.4.4.7 ParentDevice.

The ParentDevice attribute indicates the parent device this device is associated with by either
being a part of or was created from.

readonly attribute Device parentDevice;

3.1.3.2.4.4.8 Devices.

The Devices attribute contains a list of devices associated with the Device. The association is an
aggregate relationship. This aggregate relationship can be very tightly coupled or loosely
coupled. Tightly coupled is a composition relationship where the device cannot exist without the

MSRC-5000SCA
rev. 1.0

3-36

other associated device and cannot be associated with another device. Loosely coupled means
the device can be associated with another device.

readonly attribute DeviceSequence devices;

3.1.3.2.4.5 Operations.

3.1.3.2.4.5.1 terminate.

3.1.3.2.4.5.1.1 Brief Rationale.

The terminate operation provides the mechanism for terminating the execution of an application
on a specific device that was started up with the execute operation.

3.1.3.2.4.5.1.2 Synopsis.
void terminate(in ProcessID_Type processId) raise (InvalidProcess,
DeviceNotCapable);

3.1.3.2.4.5.1.3 Behavior.

The terminate operation shall terminate the execution of the function on the device.

3.1.3.2.4.5.1.4 Returns.

This operation does not return a value.

3.1.3.2.4.5.1.5 Exceptions/Errors.

The InvalidProcess exception shall be raised when the processID does not exist for that device.

The DeviceNotCapable exception shall be raised when the Device is not capable of this behavior.

3.1.3.2.4.5.2 execute.

3.1.3.2.4.5.2.1 Brief Rationale.

This operation provides the mechanism for starting up and executing software remotely on a
device, providing the device is capable of executing software threads/processes.

3.1.3.2.4.5.2.2 Synopsis.
ProcessID_Type execute(in string functionName, in Properties parameters)
 raises (DeviceNotCapable, InvalidFunction);

3.1.3.2.4.5.2.3 Behavior.

The execute operation shall execute the given function with the input parameters.The parameters
(IDs and format values) shall be:

1. prefix naming context – The ID is 1 and the value is a CORBA string.

2. stringified IOR – The ID is 2 and the value is a CORBA string.

3.1.3.2.4.5.2.4 Returns.

The execute operation shall return the ID of the process that has been created.

3.1.3.2.4.5.2.5 Exceptions/Errors.

The DeviceNotCapable exception shall be raised when the device is not capable of executing
software.

The InvalidFunction exception shall be raised when the function does not exist which means it
hasn’t been loaded on that device.

MSRC-5000SCA
rev. 1.0

3-37

3.1.3.2.4.5.3 load.

3.1.3.2.4.5.3.1 Brief Rationale.

This operation provides the mechanism for loading software on a specific device, thus allowing
new software to be executed on that device.

3.1.3.2.4.5.3.2 Synopsis.
void load(in FileSystem fs, in string fileName, in LoadType loadKind)
 raises (DeviceNotCapable, InvalidFileName);

3.1.3.2.4.5.3.3 Behavior.

The load operation shall load a file on the specified device based on the given loadKind and
fileName using the input FileSystem to retrieve it. If the input FileSystem is nil, then the load
operation shall use the parent Device's FileManager for finding the file to loaded.

3.1.3.2.4.5.3.4 Returns.

This operation does not return any value.

3.1.3.2.4.5.3.5 Exceptions/Errors.

The DeviceNotCapable exception shall be raised when the device is not capable of loading the
application (e.g., serial, audio, Ethernet, etc.).

The CF InvalidFileName exception shall be raised when the file does not exist.

3.1.3.2.4.5.4 unload.

3.1.3.2.4.5.4.1 Brief Rationale.

This operation provides the mechanism to unload software that was previously loaded.

3.1.3.2.4.5.4.2 Synopsis.
void unload(in string fileName) raises (DeviceNotCapable, InvalidFileName);

3.1.3.2.4.5.4.3 Behavior.

The unload operation shall unload application software on the specified device based on the
input fileName.

3.1.3.2.4.5.4.4 Returns.

This operation does not return a value.

3.1.3.2.4.5.4.5 Exceptions/Errors.

The DeviceNotCapable exception shall be raised when the device is not capable of unloading
software (e.g., serial, audio, Ethernet, etc.).

The CF InvalidFileName exception shall be raised when the file does not exist.

3.1.3.2.4.5.5 allocateCapacity.

3.1.3.2.4.5.5.1 Brief Rationale.

This operation provides the mechanism to request and allocate additional capacity from the
device, in order to perform more functions on the device or to use the device.

3.1.3.2.4.5.5.2 Synopsis.
void allocateCapacity(inout DataType capacity) raises (InvalidCapacity,
CapacityExceeded);

MSRC-5000SCA
rev. 1.0

3-38

3.1.3.2.4.5.5.3 Behavior.

This operation requests capacity from the device. The current capacity of the device shall be
reduced according to the capacity model based upon the capacity requested.

3.1.3.2.4.5.5.4 Returns.

The allocateCapacity operation shall return the remaining available capacity of the device.

3.1.3.2.4.5.5.5 Exceptions/Errors.

The InvalidCapacity exception shall be raised when the capacity is invalid or the capacity value
is the wrong type. The InvalidCapacity exception will state the reason for the exception.

The CapacityExceeded exception shall be raised when the capacity requested exceeds the
allocable capacity of the device

3.1.3.2.4.5.6 deallocateCapacity.

3.1.3.2.4.5.6.1 Brief Rationale.

This operation provides the mechanism to return capacity back to the device, in order to make
the device available for other uses.

3.1.3.2.4.5.6.2 Synopsis.
void deallocateCapacity(in DataType capacity) rasies (InvalidCapacity);

3.1.3.2.4.5.6.3 Behavior.

This operation returns capacity to the device. The current capacity of the device shall be
adjusted based upon the input capacity and the capacity model of the device.

3.1.3.2.4.5.6.4 Returns.

This operation does not return any value.

3.1.3.2.4.5.6.5 Exceptions/Errors.

The InvalidCapacity exception shall be raised when the capacity is invalid or the capacity value
is the wrong type. The InvalidCapacity exception will state the reason for the exception.

3.1.3.2.4.5.7 addDevice.

3.1.3.2.4.5.7.1 Brief Rationale.

This operation provides the mechanism to associate a Device with another Device. Devices
within the system may be associated with one another. This operation provides the mechanism
for creating this association. When a Device changes state or is being torn down, this affects its
associated Devices. The Device being added is an aggregate piece of this Device. This
aggregate relationship can be very tightly coupled or loosely coupled.

3.1.3.2.4.5.7.2 Synopsis.
void addDevice(in Device associatedDevice);

3.1.3.2.4.5.7.3 Behavior.

The addDevice operation shall add the new Device to its Device's attribute.

3.1.3.2.4.5.7.4 Returns.

This operation does not return any value.

MSRC-5000SCA
rev. 1.0

3-39

3.1.3.2.4.5.7.5 Exceptions/Errors.

This operation does not raise any exceptions.

3.1.3.2.4.5.8 removeDevice.

3.1.3.2.4.5.8.1 Brief Rationale.

This operation provides the mechanism to disassociate a Device with another Device.

3.1.3.2.4.5.8.2 Synopsis.
void removeDevice(in Device associatedDevice);

3.1.3.2.4.5.8.3 Behavior.

The removeDevice operation shall remove the Device from its Device's attribute.

3.1.3.2.4.5.8.4 Returns.

This operation does not return any value.

3.1.3.2.4.5.8.5 Exceptions/Errors.

This operation does not raise any exceptions.

3.1.3.2.4.5.9 executeProcess.

3.1.3.2.4.5.9.1 Brief Rationale.

This operation provides the mechanism for starting up and executing software remotely on a
device, providing the device is capable of executing software processes.

3.1.3.2.4.5.9.2 Synopsis.
ProcessID_Type executeProcess(in FileSystem fs, in string fileName, in
Properties parameters)
 raises (DeviceNotCapable, InvalidFileName);

3.1.3.2.4.5.9.3 Behavior.

The executeProcess operation shall execute the given fileName with the input parameters. If the
input FileSystem is nil, then the executeProcess operation shall use the parent Device's
FileManager for finding the file to be executed. The valid IDs and format values for parameters
shall be:

1. prefix naming context – The ID is 1 and the value is a CORBA string.

2. stringified IOR – The ID is 2 and the value is CORBA string.

3.1.3.2.4.5.9.4 Returns.

The executeProcess operation shall return the ID of the process that has been created.

3.1.3.2.4.5.9.5 Exceptions/Errors.

The DeviceNotCapable exception shall be raised when the device is not capable of executing
software.

The InvalidFileName exception shall be raised when the fileName does not exist.

3.1.3.2.4.5.10 Resource Operations.

A Device is a type of resource within the domain and has the requirements as stated in the
Resource interface. In addition, the releaseObject operation shall cause the Device and its

MSRC-5000SCA
rev. 1.0

3-40

associated Devices to be torn down. The releaseObject operation shall cause a Device
administration state to transition to the shutting down state. When the Device administrative
state is locked, meaning its associated Devices have been removed and usage state is idle, then
the Device shall be torn down and released from the CORBA environment and removed from its
parent device.

3.1.3.2.5 DeviceManager.

3.1.3.2.5.1 Description.

Each CORBA capable processor will have at least one DeviceManager. The interface for a
DeviceManager is based upon its properties, which are:

1. DeviceManager Profile – This profile contains a mapping of physical device
locations to meaning labels (e.g., audio1, serial1, etc.), along with its label-name and
DomainManager context information. The DeviceManager profile allows for the
same Device Profile to be referenced many times with the domain, instead of creating
a device profile for each instance within the domain.

2. System Services - Logger and FileManager.

The DeviceManager interface extends the Device interface by adding device management
operations for installing devices.

MSRC-5000SCA
rev. 1.0

3-41

3.1.3.2.5.2 UML.

uses

Device
us a geSt ate : Us a geType
adminSt ate : A dminType
operat ion alStat e : Opera tionalType
identifier : s tring
dev ice Profile : s tring
s oftwareProfile : s tring
label : s tring
paren tD evice : Dev ice
dev ice s : Devic eSequ ence

terminate()
execu te()
load()
un load()
allocateCapacity ()
dea llocateCapacity()
addDevice()
removeDevice()

<<Interface>>

FileSystem
<<Interface>>

Logger
<<Interface>>

FileManager
<<Interface>>

DeviceManager
dev iceM anagerProfile : s tring
log : Logger
fileM gr : FileM anager

ins tallDev ice(hardwareFS : in FileSys tem, deviceProfileFileName : in s tring , s oftwareFS : in FileSys tem, s wProfileFileName : in s tring) : vo id

<<Interface>>

InvalidFileName
<<Exception >>

InvalidProfile
<<Exception>>

Figure 3-17. DeviceManager UML

3.1.3.2.5.3 Types.

N/A.

3.1.3.2.5.4 Attributes.

3.1.3.2.5.4.1 Log.

The Log attribute is the CF Logger associated with this device manager.

readonly attribute Logger log;

3.1.3.2.5.4.2 FileMgr.

The FileMgr attribute is the CF FileManager component associated with this device.

readonly attribute FileManager fileMgr;

MSRC-5000SCA
rev. 1.0

3-42

3.1.3.2.5.4.3 DeviceManagerProfile.

The DeviceManagerProfile attribute contains the DeviceManager’s profile.

readonly attribute string deviceManagerProfile;

3.1.3.2.5.5 General Behavior.

The DeviceManager upon start up shall register itself with a DomainManager. This requirement
allows the system to be developed where at a minimum only one component reference needs to
be known which is the DomainManager. A DeviceManager shall use its profile for determining:

1. How to obtain the DomainManager component reference, whether NamingService is
being used or a DomainManager stringified IOR is being used. When
NamingService is used the DeviceManager shall create a Naming Context that
uniquely identifies the DeviceManager node. The Naming Context shall be placed
under the “/DomainName” Naming Context as “/DomainName/NodeName”.

2. Whether to create a Logger component or where to obtain a Logger component from.

3. The physical location for each Device Component.

The DeviceManager shall create FileSystem components implementing the CF FileSystem
interface for each memory device (fixed or removable disks) resident on or being controlled by
the DeviceManager. The FileSystems created shall be mounted to a FileManager component.
Each mounted FileSystem name shall be unique within the domain. A FileSystem name of the
format “/HostName/FileSystemName” shall be used.

3.1.3.2.5.6 Operations.

3.1.3.2.5.6.1 installDevice.

3.1.3.2.5.6.1.1 Brief Rationale.

This operation makes the DeviceManager aware that a new device is available for usage and
where the hardware device and software logical Device Profiles are for this device. Depending
on the implementation of the DeviceManager, it may or may not be aware (unable to detect) of a
new device or the type of new device that it has found. The outcome of this operation is to
create a new logical Device.

3.1.3.2.5.6.1.2 Synopsis.
void installDevice(in FileSystem hardwareFS, in string deviceProfileFileName,
in FileSystem softwareFS, in string swProfileFileName)
 raises(InvalidFileName, InvalidProfile);

3.1.3.2.5.6.1.3 Behavior.

The installDevice operation shall process the Device and Software Profiles, create a new Device
component, and register Device with the DomainManager. Each Device created shall be given
its logical device profile, its hardware device profile, identifier, label and parent device. If the
Device is created up as a separate process, the DeviceManager object reference shall be passed
as a parameter to the OS call that is used to create the logical Device process.

3.1.3.2.5.6.1.4 Returns.

This operation does not return a value.

MSRC-5000SCA
rev. 1.0

3-43

3.1.3.2.5.6.1.5 Exceptions/Errors.

The CF InvalidFileName exception shall be raised when the file name does not exist in the input
file system.

The CF InvalidProfile exception shall be raised when a profile is invalid.

3.1.3.2.5.6.2 addDevice.

3.1.3.2.5.6.2.1 Brief Rationale.

This operation provides the mechanism to associate a Device with another Device. Devices
within the system may be associated with one another. This operation provides the mechanism
for creating this association. When a Device changes state or is being torn down, this affects its
associated Devices. The Device being added is an aggregate piece of this Device. This
aggregate relationship can be very tightly coupled or loosely coupled.

3.1.3.2.5.6.2.2 Synopsis.
void addDevice(in Device associatedDevice);

3.1.3.2.5.6.2.3 Behavior.

The addDevice operation shall add the new Device to its Device's attribute. The addDevice
operation shall register the device with the DomainManager. The registration shall be performed
by either the registerDeviceManager process during power-up or by the installation of the device
after DeviceManager registration with the DomainManager.

3.1.3.2.5.6.2.4 Returns.

This operation does not return any value.

3.1.3.2.5.6.2.5 Exceptions/Errors.

This operation does not raise any exceptions.

3.1.3.2.5.6.3 removeDevice.

3.1.3.2.5.6.3.1 Brief Rationale.

This operation provides the mechanism to disassociate a Device from another Device.

3.1.3.2.5.6.3.2 Synopsis.
void removeDevice(in Device associatedDevice);

3.1.3.2.5.6.3.3 Behavior.

The removeDevice operation shall remove the device from its Device's attribute. The
removeDevice operation shall unregister the device with the DomainManager. The unregistration
shall be performed by either the unregisterDeviceManager process during releaseObject of a
DeviceManager or by the uninstalling (releaseObject) of the device after DeviceManager
registration with the DomainManager.

3.1.3.2.5.6.3.4 Returns.

This operation does not return any value.

3.1.3.2.5.6.3.5 Exceptions/Errors.

This operation does not raise any exceptions.

MSRC-5000SCA
rev. 1.0

3-44

3.1.3.2.5.6.4 Resource Operations.

A DeviceManager is a type of device within the domain and has the requirements as stated in the
Device interface. In addition, the start and stop shall have no effect on the DeviceManager. The
releaseObject operation shall cause the DeviceManager and its associated Devices to be torn
down (releaseObject). The releaseObject operation shall cause a DeviceManager administration
state to transition to shutting down. When the DeviceManager admin state is locked, meaning its
associated Devices removed and usage state is idle, then the DeviceManager shall be torn down
and released from the CORBA environment, and unregistered with the DomainManager.

3.1.3.3 Framework Services Interfaces.

Framework Services Interfaces shall be implemented using the CF IDL presented in Appendix C.

3.1.3.3.1 File.

3.1.3.3.1.1 Description.

The File interface provides the ability to read and write files residing within a CF-compliant,
distributed FileSystem. A file can be thought of conceptually as a sequence of octets with a
current filepointer describing where the next read or write will occur. This filepointer points to
the beginning of the file upon construction of the file object. The File interface is modeled after
the POSIX/C file interface.

3.1.3.3.1.2 UML.

File
fileName : s tring
filePointer : uns igned long

read(data : out OctetSequence, length : in uns igned long) : void
write(data : in Octet Sequence) : void
s izeOf() : uns igned long
clos e() : void
setFilePointer(filePointer : in uns igned long) : void

<<Interfa ce>>

FileException
<<Exception>> OctetSequence

Figure 3-18. File Interface UML

3.1.3.3.1.3 Types.

3.1.3.3.1.3.1 IOException.
exception IOException { string message; unsigned short errorCode};

This exception indicates an error occurred during a read or write operation to a File. The
message shall provide additional information describing the reason why the error occurred.

MSRC-5000SCA
rev. 1.0

3-45

3.1.3.3.1.3.2 InvalidFilePointer.
exception InvalidFilePointer {};

This exception indicates the file pointer is out of range based upon the current file size.

3.1.3.3.1.4 Attributes.

3.1.3.3.1.4.1 FileName.

The fileName attribute provides read-only access to the fully qualified path of the file. The
syntax for a filename is based upon the UNIX operating system. That is, a sequence of directory
names separated by forward slashes (/) followed by the base filename. The fileName attribute
will contain the filename given to the FileSystem open operation.

readonly attribute string fileName;

3.1.3.3.1.4.2 FilePointer.

The FilePointer attribute provides read access to the file pointer position where the next read or
write will occur.

Readonly attribute long filePointer;

3.1.3.3.1.5 Operations.

3.1.3.3.1.5.1 read.

3.1.3.3.1.5.1.1 Brief Rationale.

Applications require the read operation in order to retrieve data from remote files.

3.1.3.3.1.5.1.2 Synopsis.
void read(out OctetSequence data, in unsigned long length) raises (
IOException);

3.1.3.3.1.5.1.3 Behavior.

The read operation shall read octets from the file referenced up to the number specified by the
length parameter and move the file pointer forward by the number of octets actually read. Less
than this maximum number of octets shall be read only when an end of file is encountered.

3.1.3.3.1.5.1.4 Returns.

The read operation shall return the number of octets actually read from the File. If the file
pointer is pointing to the end of the File, the read operation shall return 0.

3.1.3.3.1.5.1.5 Exceptions/Errors.

The IOException shall be raised when a read error occurs.

3.1.3.3.1.5.2 write.

3.1.3.3.1.5.2.1 Brief Rationale.

Applications require the write operation in order to write data to remote files.

3.1.3.3.1.5.2.2 Synopsis.
void write(in OctetSequence data) raises (IOException);

MSRC-5000SCA
rev. 1.0

3-46

3.1.3.3.1.5.2.3 Behavior.

The write operation shall write the number of octets specified to the file referenced and move the
file pointer forward by the number of octets written. The write operation shall write no data if an
error occurs.

3.1.3.3.1.5.2.4 Returns.

None.

3.1.3.3.1.5.2.5 Exceptions/Errors.

The IOException shall be raised when a write error occurs. The file pointer shall remain
unchanged if this exception is raised.

3.1.3.3.1.5.3 sizeOf.

3.1.3.3.1.5.3.1 Brief Rationale.

An application may need to know the size of a file in order to determine memory allocation
requirements.

3.1.3.3.1.5.3.2 Synopsis.
unsigned long sizeOf() raises (FileException);

3.1.3.3.1.5.3.3 Behavior.

There is no significant behavior beyond the behavior described by the following section.

3.1.3.3.1.5.3.4 Returns.

The sizeOf operation shall return the number of octets stored in the file.

3.1.3.3.1.5.3.5 Exceptions/Errors.

The CF FileException shall be raised when a file-related error occurs (e.g., file does not exist
anymore).

3.1.3.3.1.5.4 close.

3.1.3.3.1.5.4.1 Brief Rationale.

The close operation is needed in order to release file resources once they are no longer needed.

3.1.3.3.1.5.4.2 Synopsis.
void close() raises (FileException);

3.1.3.3.1.5.4.3 Behavior.

The close operation shall release any OE file resources associated with the component. A closed
file shall no longer be capable of File-related operations.

3.1.3.3.1.5.4.4 Returns.

N/A.

3.1.3.3.1.5.4.5 Exceptions/Errors.

The CF FileException shall be raised when it can not successfully close the file.

MSRC-5000SCA
rev. 1.0

3-47

3.1.3.3.1.5.5 setFilePointer.

3.1.3.3.1.5.5.1 Brief Rationale.

The setFilePointer operation is needed in order position the file pointer where the next read or
write will occur.

3.1.3.3.1.5.5.2 Synopsis.
void setFilePointer(in unsigned long filePointer) raises (
InvalidFilePointer, FileException);

3.1.3.3.1.5.5.3 Behavior.

The setFilePointer operation shall set the file pointer position to the input filePointer value.

3.1.3.3.1.5.5.4 Returns.

This operation returns no value.

3.1.3.3.1.5.5.5 Exceptions/Errors.

The CF FileException shall be raised when the file can not be successfully accessed to set the
file pointer position.

The InvalidFilePointer exception shall be raised when the file pointer exceeds the file size.

3.1.3.3.2 FileSystem.

3.1.3.3.2.1 Description.

The FileSystem interface defines CORBA operations that enable remote access to a physical file
system.

3.1.3.3.2.2 UML.

File
<<In terface>>

FileSystem

remove(fileName : in s tring) : void
copy(s ourceFileName : in s tring, des tinationFileName : in s tring) : void
exis ts (fileName : in s tring) : boolean
lis t(pattern : in s tring) : StringSequence
create(fileName : in s tring) : File
open(fileName : in s tring, read_Only : in boolean) : File
mkdir(directoryName : in s tring) : void
rmdir(directoryName : in s tring) : void
query(fileSys temProperties : inout Properties) : void

<<Interface>>

StringSequence

uses

FileException
<<Exception>>

InvalidFileName
<<Exception>> Properties

Figure 3-19. FileSystem Interface UML

MSRC-5000SCA
rev. 1.0

3-48

3.1.3.3.2.3 Types.

3.1.3.3.2.3.1 UnknownFileSystemProperties.
exception UnknownFileSystemProperties {properties invalidProperties; };

This exception indicates a set of properties unknown by the component.

3.1.3.3.2.4 Attributes.

N/A.

3.1.3.3.2.5 Operations.

3.1.3.3.2.5.1 remove.

3.1.3.3.2.5.1.1 Brief Rationale.

The remove operation provides the ability to remove a file from a file system.

3.1.3.3.2.5.1.2 Synopsis.
void remove(in string fileName) raises(FileException, InvalidFileName);

3.1.3.3.2.5.1.3 Behavior.

The remove operation shall remove the file with the given filename. The remove operation shall
ensure that the filename is an absolute pathname of the file relative to the target FileSystem.

3.1.3.3.2.5.1.4 Returns.

None.

3.1.3.3.2.5.1.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when the filename is not valid.

The FileException shall be raised when a file-related error occurred during the remove operation.

3.1.3.3.2.5.2 copy.

3.1.3.3.2.5.2.1 Brief Rationale.

The copy operation provides the ability to copy a file to another file.

3.1.3.3.2.5.2.2 Synopsis.
void copy(in string sourceFileName, in string destinationFileName) raises(
InvalidFileName, FileException);

3.1.3.3.2.5.2.3 Behavior.

The copy operation shall copy the source file with the specified sourceFileName to the
destination file with the specified destinationFileName. The copy operation shall ensure that the
sourceFileName and destinationFileName are absolute pathnames relative to the target
FileSystem.

3.1.3.3.2.5.2.4 Returns.

None.

3.1.3.3.2.5.2.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when the filename is not valid.

The FileException shall be raised when a file-related error occurred during the copy operation.

MSRC-5000SCA
rev. 1.0

3-49

3.1.3.3.2.5.3 exists.

3.1.3.3.2.5.3.1 Brief Rationale.

The exists operation provides the ability to verify the existence of a file within a FileSystem.

3.1.3.3.2.5.3.2 Synopsis.
boolean exists(in string fileName) raises(InvalidFileName);

3.1.3.3.2.5.3.3 Behavior.

The exists operation shall check to see if a file exists based on the filename parameter. The
exists operation shall ensure that the filename is a full pathname of the file relative to the target
FileSystem and raise an exception if the name is invalid.

3.1.3.3.2.5.3.4 Returns.

The exists operation shall return True if the file exists, or False if it does not.

3.1.3.3.2.5.3.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when filename is not valid.

3.1.3.3.2.5.4 list.

3.1.3.3.2.5.4.1 Brief Rationale.

The list operation provides the ability to obtain a list of files in the FileSystem according to a
given search pattern.

3.1.3.3.2.5.4.2 Synopsis.
StringSequence list(in string pattern);

3.1.3.3.2.5.4.3 Behavior.

The list operation shall return a list of filenames based upon the search pattern given. The
following wildcard characters shall be supported:

* used to match any sequence of characters (including null).
? used to match any single character.

These wildcards may only be applied to the base filename in the search pattern given. For
example, the following are valid search patterns:

/tmp/files/*.* Returns all files and directories within the /tmp/files directory. Directory
names shall be indicated with a “/” at the end of the name.

/tmp/files/foo* Returns all files beginning with the letters “foo” in the /tmp/files directory.
/tmp/files/f?? Returns all 3 letter files beginning with the letter f in the /tmp/files directory.
/*/files/foo* Returns all files in subdirectories of the name “files” and starting with the

letters “foo”.
/*/fi?es/f??.* Returns all files in subdirectories of the name “fi”, some character and “es”

and starting with the letter “f” followed by any 2 characters.

3.1.3.3.2.5.4.4 Returns.

The list operation shall return a StringSequence of filenames matching the wildcard
specification.

MSRC-5000SCA
rev. 1.0

3-50

3.1.3.3.2.5.4.5 Exceptions/Errors.

None.

3.1.3.3.2.5.5 create.

3.1.3.3.2.5.5.1 Brief Rationale.

The create operation provides the ability to create a new file on the FileSystem.

3.1.3.3.2.5.5.2 Synopsis.
File create(in string fileName) raises(InvalidFileName, FileException);

3.1.3.3.2.5.5.3 Behavior.

The create operation shall create a new File based upon the provided file name.

3.1.3.3.2.5.5.4 Returns.

The create operation returns a File component reference to the opened file. A null file
component reference shall be returned if an error occurs.

3.1.3.3.2.5.5.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when a filename is not valid.

The FileException shall be raised if the File already exists or another file error occurred.

3.1.3.3.2.5.6 open.

3.1.3.3.2.5.6.1 Brief Rationale.

The open operation provides the ability to open a file for read or write.

3.1.3.3.2.5.6.2 Synopsis.
File open(in string fileName, in boolean readOnly) raises(InvalidFileName,
FileException);

3.1.3.3.2.5.6.3 Behavior.

The open operation shall open a file based upon the input fileName. The readOnly parameter
indicates if the file should be opened for read access only. When readOnly is false the file is
opened for write access.

3.1.3.3.2.5.6.4 Returns.

A File component shall be returned on successful completion of the open operation. A null File
component reference shall be returned if the open operation is unsuccessful. If the file is opened
with the readOnly flag set to true, then writes to the file will be considered an error.

3.1.3.3.2.5.6.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when the filename is not valid.

The FileException shall be raised if the File does not exist or another file error occurred.

3.1.3.3.2.5.7 mkdir.

3.1.3.3.2.5.7.1 Brief Rationale.

The mkdir operation provides the ability to create a directory on the file system.

3.1.3.3.2.5.7.2 Synopsis.
void mkdir(in string directoryName) raises(InvalidFileName, FileException);

MSRC-5000SCA
rev. 1.0

3-51

3.1.3.3.2.5.7.3 Behavior.

The mkdir operation shall create a FileSystem directory based on the directoryName given. Th
mkdir operation shall create all parent directories required to create the directory path given.

3.1.3.3.2.5.7.4 Returns.

None.

3.1.3.3.2.5.7.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when the directory name is not valid.

The FileException shall be raised if a file-related error occurred during the operation.

3.1.3.3.2.5.8 rmdir.

3.1.3.3.2.5.8.1 Brief Rationale.

The rmdir operation provides the ability to remove a directory from the file system.

3.1.3.3.2.5.8.2 Synopsis.
void rmdir(in string directoryName) raises(InvalidFileName, FileException);

3.1.3.3.2.5.8.3 Behavior.

The rmdir operation shall remove a FileSystem directory based on the directoryName given.

3.1.3.3.2.5.8.4 Returns.

None.

3.1.3.3.2.5.8.5 Exceptions/Errors.

The InvalidFilename exception shall be raised when the directory name is not valid.

The FileException shall be raised if the Directory does not exist or another file-related error
occurred.

3.1.3.3.2.5.9 query.

3.1.3.3.2.5.9.1 Brief Rationale.

The query operation provides the ability to retrieve information about a file system.

3.1.3.3.2.5.9.2 Synopsis.
void query(inout Properties fileSystemProperties) raises(
UnknownFileSystemProperties);

3.1.3.3.2.5.9.3 Behavior.

The query operation shall return file system information to the calling client based upon the
given fileSystemProperties' ID.

As a minimum, the following fileSystemProperties shall be supported:

1. SIZE - an ID value of "SIZE" causes query to return an unsigned Long containing the file
system size (in octets).

2. AVAILABLE_SPACE - an ID value of "AVAILABLE_SPACE" causes the query
operation to return an unsigned Long containing the available space on the file system (in
octets).

MSRC-5000SCA
rev. 1.0

3-52

3.1.3.3.2.5.9.4 Returns.

None.

3.1.3.3.2.5.9.5 Exceptions/Errors.

The UnknownFileSystemProperties exception shall be raised when the given file system
property is not recognized by the query operation.

3.1.3.3.3 FileManager.

3.1.3.3.3.1 Description.

Multiple, distributed FileSystems may be accessed through a FileManager. The FileManager
interface appears to be a single FileSystem although the actual file storage may span multiple
physical file systems.

This is called a federated file system. A federated file system is created using the mount and
unmount operations. Typically, the DomainManager or system initialization software will
invoke these operations.

The FileManager inherits the IDL interface of a FileSystem. Based upon the pathname of a
directory or file and the set of mounted filesystems, the FileManager will delegate the
FileSystem operations to the appropriate FileSystem. For example, if a FileSystem is mounted at
/ppc2, an open operation for a file called /ppc2/profile.xml would be delegated to the
mounted FileSystem. The mounted FileSystem will be given the filename relative to it. In this
example the FileSystem’s open operation would receive /profile.xml as the fileName
argument.

Another example of this concept can be shown using the copy operation. When a client invokes
the copy operation, the FileManager will delegate operations to the appropriate FileSystems
(based upon supplied pathnames) thereby allowing copy of files between FileSystems.

If a client does not need to mount and unmount FileSystems, it can treat the FileManager as a
FileSystem by CORBA widening a FileManager reference to a FileSystem reference. One can
always widen a FileManager to a FileSystem since the FileManager is derived from a
FileSystem.

MSRC-5000SCA
rev. 1.0

3-53

3.1.3.3.3.2 UML.

FileManager

mount(mountPoint : in s tring, file_Sys tem : in FileSys tem) : void
unmount(mountPoint : in s tring) : void
getMounts () : MountSequence

<<In terfa ce>>

FileSystem
<<Interface>>

InvalidFileName
FileSystem

<<Interface>>

Figure 3-20. FileManager Interface UML

3.1.3.3.3.3 Types.

3.1.3.3.3.3.1 MountType.

The MountType structure shall be used to identify the FileSystems mounted within the
FileManager.

struct MountType {
 string mountPoint;
 FileSystem fs;
};

3.1.3.3.3.3.2 MountSequence.

The MountSequence is an unbounded sequence of Mount types.

typedef sequence<MountType> MountSequence;

3.1.3.3.3.3.3 FileSystemPropertyType.

The FileSystemPropertyType shall be used to associate a property with a specific FileSystem.

struct FileSystemPropertyType {
 string fileSystemName;
 DataType property;
};

3.1.3.3.3.3.4 FileSystemPropertySequence.

The FileSystemPropertySequence is an unbounded sequence of FileSystemPropertyTypes.

typedef sequence<FileSystemPropertyType> FileSystemPropertySequence;

MSRC-5000SCA
rev. 1.0

3-54

3.1.3.3.3.3.5 NonExistentMount.
exception NonExistentMount {};

This exception indicates a mount point does not exist within the FileManager.

3.1.3.3.3.3.6 MountPointAlreadyExists.

This exception indicates the mount point is already in use in the file manager.

exception MountPointAlreadyExists {};

3.1.3.3.3.3.7 InvalidFileSystem.

This exception indicates the FileSystem is a null (nil) object reference.

exception InvalidFileSystem {};

3.1.3.3.3.4 Attributes.

N/A.

3.1.3.3.3.5 Operations.

3.1.3.3.3.5.1 mount.

3.1.3.3.3.5.1.1 Brief Rationale.

The FileManager supports the notion of a federated file system. To create a federated file
system, the mount operation associated a FileSystem with a mount point (a directory name).

3.1.3.3.3.5.1.2 Synopsis.
void mount(in string mountPoint, in FileSystem fileSystem) raises(
InvalidFileName, InvalidFileSystem, MountPointAlreadyExists);

3.1.3.3.3.5.1.3 Behavior.

The mount operation shall associate the specified FileSystem with the given mountPoint. The
mount operation shall ensure that the mountPoint is a valid subdirectory path within the target
FileSystem.

3.1.3.3.3.5.1.4 Returns.

None.

3.1.3.3.3.5.1.5 Exceptions/Errors.

The NonExistentMount exception shall be raised when the mount point (directory) name is not
valid.

The MountPointAlreadyExists exception shall be raised when the mount point already exists in
the file manager.

The InvalidFileSystem exception shall be raised when input FileSystem is a null object reference.

3.1.3.3.3.5.2 unmount.

3.1.3.3.3.5.2.1 Brief Rationale.

Mounted FileSystems may need to be removed from a FileManager.

3.1.3.3.3.5.2.2 Synopsis.
void unmount(in string mountPoint) raises(NonExistentMount);

MSRC-5000SCA
rev. 1.0

3-55

3.1.3.3.3.5.2.3 Behavior.

The unmount operation shall remove a mounted FileSystem from the FileManager whose
mounted name matches the input mountPoint name.

3.1.3.3.3.5.2.4 Returns.

None.

3.1.3.3.3.5.2.5 Exceptions/Errors.

The NonexistentMount exception shall be raised when the mount point does not exist.

3.1.3.3.3.5.3 getMounts.

3.1.3.3.3.5.3.1 Brief Rationale.

File management user interfaces may need to list a FileManager’s mounted FileSystems.

3.1.3.3.3.5.3.2 Synopsis.
MountSequence getMounts();

3.1.3.3.3.5.3.3 Behavior.

The getMounts operation shall return a sequence of Mount structures that describe the mounted
FileSystems.

3.1.3.3.3.5.3.4 Returns.

The getMounts operation returns a sequence of Mount structures.

3.1.3.3.3.5.3.5 Exceptions/Errors.

None.

3.1.3.3.3.5.4 File System Operations.

The system may support multiple FileSystem implementations. Some FileSystems will
correspond directly to a physical file system within the system. The FileManager interface shall
support a federated, or distributed, file system that may span multiple FileSystem components.
From the client perspective, the FileManager may be used just like any other FileSystem
component since the FileManager inherits all the FileSystem operations.

The FileManager’s inherited FileSystem operations behavior shall implement the requirements
of the FileSystem operations against the mounted file systems. The FileSystem operations shall
ensure that the filename/directory arguments given are absolute pathnames relative to a mounted
FileSystem.

3.1.3.3.3.5.5 query.

3.1.3.3.3.5.5.1 Brief Rationale.
The inherited query operation provides the ability to retrieve the same information for a set of
file systems.

3.1.3.3.3.5.5.2 Synopsis.
void query(inout Properties fileSystemProperties) raises(
UnknownFileSystemProperties);

MSRC-5000SCA
rev. 1.0

3-56

3.1.3.3.3.5.5.3 Behavior.

The query operation shall return file systems information to the calling client based upon the
given fileSystemProperties' fileSystemName and ID. If the fileSystemName property is null, the
given property for all of the mounted file systems shall be returned.

As a minimum, the following fileSystemProperties shall be supported:

1. SIZE - an ID value of "SIZE" causes query to return a value of a
FileSystemPropertySequence when each item is a mounted file system name with a
property value of unsigned Long containing the file system size (in octets).

2. AVAILABLE_SPACE - an ID value of "AVAILABLE_SPACE" causes query to
return a value of a FileSystemPropertySequence when each item is a mounted file
system name with a property value of unsigned Long containing the available space
on the file system (in octets).

3.1.3.3.3.5.5.4 Returns.

None.

3.1.3.3.3.5.5.5 Exceptions/Errors.

The UnknownFileSystemProperties exception shall be raised when the given file system
property is not recognized by the query operation.

3.1.3.3.4 StringConsumer.

3.1.3.3.4.1 Description.

This interface is implemented by the Logger to push a string to consumers. The operations
contained within this interface are used to define the consumers to whom producers are
responsible for pushing messages.

3.1.3.3.4.2 UML.

StringConsumer

proces sString(s tringM sg : in s t ring, options : in Proper ties) : v oid

<<Interface>>

Properties

Figure 3-21. StringConsumer Interface UML

3.1.3.3.4.3 Types.

N/A.

3.1.3.3.4.4 Attributes.

N/A.

MSRC-5000SCA
rev. 1.0

3-57

3.1.3.3.4.5 Operations.

3.1.3.3.4.5.1 processString.

3.1.3.3.4.5.1.1 Brief Rationale.

Logger requires the processString operation in order to transfer CORBA string data to
components implementing this interface (i.e. HCI).

3.1.3.3.4.5.1.2 Synopsis.
oneway void processString (in string stringMsg, in Properties options);

3.1.3.3.4.5.1.3 Behavior.

The implementation of this operation is component dependent.

3.1.3.3.4.5.1.4 Returns.

This operation does not return a value.

3.1.3.3.5 Logger.

3.1.3.3.5.1 Description.

Logger defines the interface for logging data and receiving log data. The Logger interface is
used to capture alarms, log warnings, and information messages and for pushing log messages to
registered consumers. The interface provides operations for both producer and consumer clients.
Consumers use the StringConsumer interface for receiving log data from a Logger. The Logger
pushes log data to consumers based upon each consumer’s log level.

3.1.3.3.5.2 UML.

Logger

logData(producerName : in s tring, mess ageString : in s tring , logLevel : in uns igned short) : void
setLoggingState(enable : in boolean) : void
setConsumerLogLevel(consumerName : in s tring , producerName : in s tring, logLevel : in uns igned s hort) : void
getLogs (number : in uns igned s hort) : StringSequence
regis terCons umer(consumerName : in s tring, s trCons umer : in StringConsumer, logLevel : in uns igned short) : void
unregis terCons umer(cons umerName : in s tring) : void
getCons umerLogLevels (consumerName : in s tring) : ProducerLogLevels
setProducerLogLevel(producerName : in s tring, logLevel : in uns igned s hort) : void
regis terProducer(producerName : in s tring , logLevel : in uns igned short) : void
unregis terProducer(producerName : in s tring) : void
getProducerLogLevels (producerName : in s tring) : ProducerLogLevels

<<Interface>>

StringS equence
StringConsumer

<<Interface>>

Figure 3-22. Logger Interface UML

MSRC-5000SCA
rev. 1.0

3-58

3.1.3.3.5.3 Types.

The logLevel type contains the valid levels for log data being logged and logs data being
received.

The logLevel shall be an unsigned short (16 bits) and is bitmapped 00 00 - 7F FF (hex). The
MSB (d15) is a control bit to allow for log level manipulation. Logger Level manipulation using
the control bit is as follows:

1. BIT Matching - When the control bit is one (1), then logging or forwarding log data
shall be performed when the input log level matches registered consumer or producer
log level. Example - LogLevel = C010 h (1100 0000 0001 0000 b) indicates only
levels 14 and 4 are to be sent to a consumer or logged for a producer.

2. BIT Leveling - When the control bit is zero then logging or forwarding log data shall
be performed when the input log level is less than or equal to registered consumer or
producer log level. Example - LogLevel = 000A h indicates levels 9 (10 least
significant bits) and below will be sent to a consumer or logged for a producer, and
bits 4-14 are unused.

The logLevels can be set for consumers and producers. For producers the log level indicates the
kind of information being logged. For consumers the log level determines what log information
is sent to a consumer.

The Logger, consumers, and producers shall use the log levels in the following table. The log
levels in table 3-1 are listed in order of significance. Log level value 0x0001 is of the highest
significance. Each increasing log level thereafter decreases in significance. An event may cause
more than one (1) log message.

MSRC-5000SCA
rev. 1.0

3-59

Table 3-1. Logger, Consumers, and Producers Log Levels

LogLevel
Numeric

Value LogLevel Name

Bit
Mask
Value Description

1 Security_Alarm 0x0001 This level indicates a security violation has
occurred.

2 Failure_Alarm 0x0002 This level indicates faulted (disabled) operational
behavior by either a software or hardware
component.

3 Degraded_Alarm 0x0004 This level indicates degraded operational behavior
by either a software or hardware component.

4 Reserved_1 0x0008 Reserved for future use.
5 Reserved_2 0x0010 Reserved for future use.
6 Exception_Error 0x0020 This level indicates an exception or abnormal

condition has occurred.
7 Flow_Control_

Error
0x0040 This level indicates a data flow control error has

occurred.
8 Range_Error 0x0080 This level indicates a range or constraint error has

occurred.
9 Usage_Error 0x0100 This level indicates a function was not performed

due to improper configuration or state. This level
can be used at startup or during runtime of a
software or hardware component.

10 Reserved_3 0x0200 Reserved for future use.
11 Administrative_

Event
0x0400 This level indicates an Administrative event (state

change) has occurred (e.g. a software or hardware
component has be commanded to offline (locked)
state).

12 Statistic_Report 0x0800 This level indicates performance statistics that can
be logged by an software component.

13 Reserved_4 0x1000 Reserved for future use.
14 Programmer_

Debug1
0x2000 This level indicates programmer debug

information containing normal processing flow
information. The amount of information shall be
kept to a minimum.

15 Programmer_
Debug2

0x4000 This level indicates programmer debug
information containing increased debug detail and
amount (e.g. buffer / queue / memory dumps).

NA Log_Control_Bit 0x8000 This level indicates how the log level data is to be
used (BIT Matching or BIT Leveling as described
above).

MSRC-5000SCA
rev. 1.0

3-60

3.1.3.3.5.3.1 NameNotFound Exception.

This exception indicates the input name (producer or consumer) does not exist in the Logger.

exception NameNotFound {};

3.1.3.3.5.3.2 MATCH_ALL_NAMES.

This constant defines a special name that indicates all producer names are to be used by a
consumer or for getting producer log levels.

constant string MATCH_ALL_NAMES = “*”;

3.1.3.3.5.3.3 Producer Log Level Type.
struct ProducerLogLevelType

{
 string name;
 unsigned short logLevel;
};

3.1.3.3.5.3.4 Producer Log Levels.

This type defines an unbounded sequence of producer log levels.

Typedef sequence <ProducerLogLevelType> ProducerLogLevels;

3.1.3.3.5.4 Attributes.

N/A.

3.1.3.3.5.5 Operations.

3.1.3.3.5.5.1 logData.

3.1.3.3.5.5.1.1 Brief Rationale.

Applications require the logData operation in order to log messages locally (in memory) and
push log messages to registered consumers.

3.1.3.3.5.5.1.2 Synopsis.
oneway void logData(in string producerName, in string messageString, in
unsigned short logLevel);

3.1.3.3.5.5.1.3 Behavior.

The logData operation (figure 3-23) shall only log messages locally and sends messages to
consumers when the Logger’s logging state is enabled.

The logData operation shall create a log message based upon input messageString, current time,
input logLevel and input producerName.

The log message shall be saved locally in memory when the input logLevel criteria matches one
of the registered producer’s log levels.

The LogData operation shall push the String to registered consumers when the input log level
criteria matches the registered consumers’ log levels. A registered consumer’s logLevel criteria
of producerName set to “*” shall cause all logging of data to be sent to this consumer if the input
logLevel matches consumer log level criteria. A registered consumer’s logLevel criteria of
producerName beginning with characters and ended by “*” shall cause all logging of data to be

MSRC-5000SCA
rev. 1.0

3-61

sent to this consumer when the input producerName begins with the same characters and input
logLevel matches consumer log level criteria. The LogData operation shall use the
StringConsumer::processString operation for pushing messages to registered consumers.
Current time, input logLevel and input producerName shall be placed in the
StringConsumer::processString options parameter.

 : Logger Consumers :
StringConsumer

Producer :
Resource

log
storage

3: write (string)

1: logData(in string, in string, in
unsigned short)

2: processString(in string, in Properties)

Figure 3-23. LogData Operational Behavior

3.1.3.3.5.5.1.4 Returns.

The IDs and format values returned in the StringConsumer::processString options shall be:

1. ProducerName – The ID is 1 and the value is a CORBA string.

2. LogLevel – The ID is 2 and the value is CORBA unsigned short.

3. Time – The ID is 3 and the value is a CORBA string of form “HH:MM”.

3.1.3.3.5.5.1.5 Exceptions/Errors.

N/A.

3.1.3.3.5.5.2 setLoggingState.

3.1.3.3.5.5.2.1 Brief Rationale.

This operation allows for controlling the overall logging state for the Logger.

3.1.3.3.5.5.2.2 Synopsis.
void setLoggingState(in boolean enable);

3.1.3.3.5.5.2.3 Behavior.

The setLoggingState operation shall set the Logger’s logging state to either allow or disallow the
logging of all messages to console and file, and sending messages to consumers.

3.1.3.3.5.5.2.4 Returns.

N/A.

3.1.3.3.5.5.2.5 Exceptions/Errors.

N/A.

MSRC-5000SCA
rev. 1.0

3-62

3.1.3.3.5.5.3 setProducerLogLevel.

3.1.3.3.5.5.3.1 Brief Rationale.

Applications require the logData operation in order to set the log level for a producer, which
controls the type of information being logged for this producer.

3.1.3.3.5.5.3.2 Synopsis.
void setProducerLogLevel(in string producerName, in unsigned short logLevel)
raises (NameNotFound);

3.1.3.3.5.5.3.3 Behavior.

The setProducerLogLevel operation shall set the log level for a producer component. The
Logger will use this log level to determine when to log messages for this producer.

3.1.3.3.5.5.3.4 Returns.

N/A.

3.1.3.3.5.5.3.5 Exceptions/Errors.

The NameNotFound exception shall be raised when the producer does not exist in the logger.

3.1.3.3.5.5.4 setConsumerLogLevel.

3.1.3.3.5.5.4.1 Brief Rationale.

Applications require the logData operation in order to set the log level criteria for a consumer,
which controls the type of information being pushed to this consumer.

3.1.3.3.5.5.4.2 Synopsis.
void setConsumerLogLevel(in string consumerName, in string producerName, in
unsigned short logLevel) raises (NameNotFound);

3.1.3.3.5.5.4.3 Behavior.

The setConsumerLogLevel operation shall set the log level criteria for a consumer component
based upon the input parameters. The consumer logLevel criteria is a set of logLevels per
producer. This allows different producer log data to be pushed to consumers.

A special producerName of “*” will cause all logging of data to be sent to this consumer if the
input logLevel matches consumer log level.

A special producerName beginning with characters and ending in "*" will cause all logging of
data to be sent to this consumer when the input producer has the same beginning characters in
their name and the input logLevel matches the consumer log level.

The Logger will use these log level criteria to determine when a producer-logged data is sent to
this consumer.

3.1.3.3.5.5.4.4 Returns.

N/A.

3.1.3.3.5.5.4.5 Exceptions/Errors.

The NameNotFound exception shall be raised when the producer does not exist in the Logger.

MSRC-5000SCA
rev. 1.0

3-63

3.1.3.3.5.5.5 getLogs.

3.1.3.3.5.5.5.1 Brief Rationale.

Applications require the getDisplaylast operation in order to display a specified number of
previous log messages stored locally.

3.1.3.3.5.5.5.2 Synopsis.
Message::StringSequence getLogs(in unsigned short number);

The ‘number’ input parameter represents the last number of previous log entries stored locally.

3.1.3.3.5.5.5.3 Behavior.

The getLogs operation shall return a qualified number of Logger messages stored locally, starting
with the most recent. The number of log messages returned shall be based upon the input
number as permitted by the actual size of the locally stored log messages.

3.1.3.3.5.5.5.4 Returns.

This operation returns a sequence of character strings consisting of Logger messages.

3.1.3.3.5.5.5.5 Exceptions/Errors.

N/A.

3.1.3.3.5.5.6 registerConsumer.

3.1.3.3.5.5.6.1 Brief Rationale.

Applications require the registerConsumer operation in order to receive log messages that are
being logged.

3.1.3.3.5.5.6.2 Synopsis.
void registerConsumer(in string consumerName, in StringConsumer MsgConsumer,
in unsigned short logLevel);

The consumerName identifies the consumer. The MsgConsumer is the StringConsumer
component to be used for pushing log messages to the consumer. The logLevel initially
identifies the kind of log information the consumer is interested in from all producers.

3.1.3.3.5.5.6.3 Behavior.

The registerConsumer operation shall register a consumer with Logger using the input
parameters. If the consumer already exists, the registerConsumer operation shall ignore the
request. The logLevel shall initially be used for all log data being logged.

3.1.3.3.5.5.6.4 Returns.

N/A.

3.1.3.3.5.5.6.5 Exceptions/Errors.

N/A.

3.1.3.3.5.5.7 registerProducer.

3.1.3.3.5.5.7.1 Brief Rationale.

Applications require the registerProducer operation in order to have their log information saved
locally or to a file, provided the logLevel matches.

MSRC-5000SCA
rev. 1.0

3-64

3.1.3.3.5.5.7.2 Synopsis.
void registerProducer(in string producerName, in unsigned short logLevel);

The producerName identifies the producer. The logLevel initially identifies the kind of log
information required from the producer.

3.1.3.3.5.5.7.3 Behavior.

The registerProducer operation shall register a producer with Logger using the input parameters.
If the producer already exists, the registerProducer operation shall ignore the request.

3.1.3.3.5.5.7.4 Returns.

N/A.

3.1.3.3.5.5.7.5 Exceptions/Errors.

N/A.

3.1.3.3.5.5.8 unregisterConsumer.

3.1.3.3.5.5.8.1 Brief Rationale.

Applications require the unregisterConsumer operation in order to remove a consumer from a
logger, so messages are no longer pushed to the consumer.

3.1.3.3.5.5.8.2 Synopsis.
void unregisterConsumer(in string consumerName) raises (NameNotFound);

3.1.3.3.5.5.8.3 Behavior.

The unregisterConsumer operation shall unregister a consumer from the Logger causing the
Logger to stop sending log messages to a previously registered consumer.

3.1.3.3.5.5.8.4 Returns.

N/A.

3.1.3.3.5.5.8.5 Exceptions/Errors.

The NameNotFound exception shall be raised when the consumer does not exist in the Logger.

3.1.3.3.5.5.9 unregisterProducer.

3.1.3.3.5.5.9.1 Brief Rationale.

Applications require the unregisterProducer operation in order to remove a producer from a
Logger, so messages are no longer logged for a producer.

3.1.3.3.5.5.9.2 Synopsis.
void unregisterProducer(in string producerName) raises (NameNotFound);

3.1.3.3.5.5.9.3 Behavior.

The unregisterProducer operation shall unregister a producer from the Logger causing the
Logger to stop all logging activities for that particular producer.

3.1.3.3.5.5.9.4 Returns.

N/A.

MSRC-5000SCA
rev. 1.0

3-65

3.1.3.3.5.5.9.5 Exceptions/Errors.

The NameNotFound exception shall be raised when the producer does not exist in the Logger.

3.1.3.3.5.5.10 getProducerLogLevels.

3.1.3.3.5.5.10.1 Brief Rationale.

This operation is required as a feedback mechanism to registered consumers for registered
consumer(s) log levels.

3.1.3.3.5.5.10.2 Synopsis.
ProducerLogLevels getProducerLogLevels(in string producerName);

3.1.3.3.5.5.10.3 Behavior.

The getProducerLogLevels operation returns the current log levels for passed in registered
producer component name(s). A special ProducerName of "*" shall return all producers
logLevels. A special ProducerName beginning with characters followed "*" shall return all
registered producers that have the same beginning characters in their name.

Examples:

"HQ" would be all registered producer names that match exactly with string "HQ".

"HQ*" would be all registered producer names starting with string "HQ".

"*" would be all registered producers.

3.1.3.3.5.5.10.4 Returns.

This operation returns a sequence of producer name and associated log level data. The set
returned may be empty when a producerName name match is not found.

3.1.3.3.5.5.10.5 Exceptions/Errors.

N/A.

3.1.3.3.5.5.11 getConsumerLogLevels.

3.1.3.3.5.5.11.1 Brief Rationale.

This operation is required as a feedback mechanism to registered consumers for a consumer’s
current log level.

3.1.3.3.5.5.11.2 Synopsis.
ProducerLogLevels getConsumerLogLevels(in string consumerName);

3.1.3.3.5.5.11.3 Behavior.

The getConsumerLogLevels operation returns the current log levels for passed in registered
consumer component name(s).

3.1.3.3.5.5.11.4 Returns.

This operation returns a sequence of producer name and associated log level data for a specified
consumer. The set returned may be empty when a consumerName name match is not found.

3.1.3.3.5.5.11.5 Exceptions/Errors.

N/A.

MSRC-5000SCA
rev. 1.0

3-66

3.1.3.3.6 Timer.

No SCA-mandated Timer interfaces have been defined at this time.

3.1.3.4 Domain Profile.

The hardware devices and software components that make up an SCA system domain are
described by a set of files that are collectively referred to as a Domain Profile. These files
describe the identity, capabilities, properties, inter-dependencies, and location of the hardware
devices and software components that make up the system. All of the descriptive data about a
system is expressed in the XML vocabulary. For purposes of this SCA specification, the
elements of the XML vocabulary have been based upon the OMG’s CORBA Components
specification (orbos/99-07-01). [Note: At the time of this writing, 99-07-01 is a draft standard].

The types of XML files that are used to describe a system's hardware and software assets are
depicted in figure 3-24. The XML vocabulary within each of these files describes a distinct
aspect of the hardware and software assets.

Domain Profile files shall use the format of the Document Type Definitions (DTDs) provided in
Appendix D.

3 “Design Patterns : Elements of Reusable Object-Oriented Software” (Addison-Wesley
Professional Computing) Gamma, Helm, Johnson, and Vlissides, pg. 139

MSRC-5000SCA
rev. 1.0

3-67

Software Assembly Descriptor
<<File>>

Implementation

PropertyFile
<<File>>

0..10..1

Software Package Descriptor
<<File>>

1..*1..*

1..*1..*

0..10..1

Software Component Descriptor
<<File>>

0..10..1

Device Package Descriptor
<<File>>

11

0..10. .1

Figure 3-24. Relationship of Domain Profile XML File Types

3.1.3.4.1 Software Package Descriptor.

A Software Package Descriptor identifies a software package. A Software Package Descriptor
file has a “.spd” extension. General information about a software package, such as the name,
author, location of implementation (component and/or assembly files) and property files, and
package level and/or implementation level hardware and/or software dependencies are contained
in a Software Package Descriptor file. The Implementation element is part of the Software
Package Descriptor.

3.1.3.4.2 Software Component Descriptor.

A Software Component Descriptor contains information about a specific SCA software
component (Resource, ResourceFactory, Device). A Software Component Descriptor file has a
“.scd” extension. Information about the interfaces that a component provides and/or uses as well
as any specific property files referenced by the component are contained in a Software
Component Descriptor file.

MSRC-5000SCA
rev. 1.0

3-68

3.1.3.4.3 Software Assembly Descriptor.

A Software Assembly Descriptor contains information about the interface connections that are
supported among two or more software components that make up a software assembly. A
Software Assembly Descriptor file has a “.sad” extension.

3.1.3.4.4 Property File.

A Property File contains information about the properties applicable to a software package or a
software component. A Software Property File has a “.spf” extension. A Device Property File
contains information about the properties of a device. A Device Property File has a “.dpf”
extension. Information such as processor types, device capacities, and programmable devices
are contained in a Device Property File.

3.1.3.4.5 Device Package Descriptor File.

A Device Package Descriptor File identifies a class of a device. A Device Descriptor File has a
“.dpd” extension. Device identification information, including the device name, device class,
model number, and serial number are contained in a Device Descriptor File.

3.1.3.4.6 Device Assembly Descriptor.

A Device Assembly Descriptor contains information about the interface connections that are
supported among two or more hardware devices that make up a device assembly. A Device
Assembly Descriptor file has a “.dad” extension. [The Device Assembly Descriptor has not been
defined at this time.]

MSRC-5000SCA
rev. 1.0

3-69

3.2 APPLICATIONS.

Applications are programs that perform the functions of a specific SCA-compliant product.
They must meet the requirements of a procurement specification and are not defined by the SCA
except as they interface to the OE.

3.2.1 General Application Requirements.

3.2.1.1 OS Services.

Applications shall be limited to using the OS services that are designated as mandatory in the
SCA AEP as specified in section 3.1.1.

Applications shall perform file access through the CF File interfaces.

To ensure controlled termination, applications shall have a signal handler installed for SIGQUIT.

3.2.1.2 CORBA Services.

Applications shall be limited to using CORBA and CORBA services as specified in section
3.1.2. Use of Naming Services per 3.1.2.2.1 is optional; if it is not used, applications shall
include stringified IORs in their Software Profile

3.2.1.3 CF Interfaces.

Applications shall use the CF interfaces as specified in section 3.1.3.1 with the corresponding
IDL in Appendix C, except as follows:

1. The use of StringConsumer per section 3.1.3.3.4 is optional if components do not
consume Logger data.

2. The use of Logger per section 3.1.3.3.5 is optional if data is not logged.

3. The use of ResourceFactory per section 3.1.3.1.6 is optional.

Each application process that uses Naming Service shall support the name parameters passed by
the DeviceManager (/ DomainName / NodeName / [other context sequences] /
ComponentName_UniqueIdentifier). This registration shall be placed underneath the last
naming context passed to the application. (In the naming parameter string, each "slash" (/)
represents a separate naming context.)

Applications' components and DeviceManagers shall be provided with Domain Profile files per
3.1.3.4. These files shall be in XML, using the format shown in Appendix D.

3.2.1.3.1 CF Interface Extensions.

Applications are allowed to extend the CF Port interfaces (section 3.1.3.1.1) and the CF
Resource interfaces (section 3.1.3.1.5). Extensions to the CF Port interface define the Port data
interfaces. Extensions to the CF Resource interface allow for the inheritance of additional
component-specific interfaces. All extensions shall be documented in IDL and identified with a
Universally Unique Identifier (UUID), as defined in section 7.4. This UUID shall be included in
the Software Profile to identify the interface requirements of the application to the
DomainManager.

The CF Port extensions for basic data sequence types and the push and pull interfaces for using
these types are shown in Figure 3-25 and Figure 3-26. If the extensions are used, they shall be
implemented using the IDL in the Appendix C.

MSRC-5000SCA
rev. 1.0

3-70

WcharSeqProducer

getW charM sg()

<<Interface>>

Port

connectPort()
dis connectPort()

(from CF IDL Design Com ponents)

<<Interfa ce>>

O ctetSeqProducer

getOctetM sg()

<<Interface>>

LongSeqProducer

getLo ngMsg ()

<<Interface>>

FloatSeqProducer

getFloatM sg()

<<Inte rface>>

Doub leSeqProducer

getDoubleM sg()

<<Interface>> LongDoubleSeqProducer

getLongDoubleMs g()

<<Interface>>

WstringSeqProducer

g etW str in gMsg()

<<Interface >>

AnyProducer

getM s g()

<<Interface>>

ShortSeqProducer

getShortM sg()

<<Interface>>

BooleanSeqProducer

getBooleanM sg()

<<Interface>>

CharSeqProducer

getCharM sg()

<<Interface>>

LongLongSeqProducer

getLongLongMs g(ms g : out PortTypes ::LongLongSequence, options : out CF::Properties) : void

<<Interface>>

UlongSeqProducer

getUlongMs g()

<<Interface>>

UlongLongSeqProducer

getULongLongM sg()

<<Interface >>

UshortSeqProducer

getUshortMs g()

<<Interface>>

StringSeqProducer

getStringM sg(msg : out CF::StringSequence, options : out CF::Properties) : vo id

<<Inte rface>>

Figure 3-25. PushPort Data Interfaces

MSRC-5000SCA
rev. 1.0

3-71

Port

connectPort()
dis connectPort()

(from CF IDL Desi gn Co mpon en ts)

<<Interface>>

O ctetSeqConsumer

proces s OctetM s g(ms g : in CF::OctetSequence, options : in CF::Properties) : void

<<Interface>>

WcharSeqConsumer

proces s W charM s g()

<<Interface>>

LongSeqConsumer

proces s LongM s g()

<<Interface>>

ShortSeqConsumer

proces s ShortM s g()

<<Interface>>

LongLongSeqConsumer

proces s LongLongM s g()

<<Interface>>

UlongSeqC onsumer

proces s UlongM s g()

<<Interface>>

UlongLongSeqConsumer

proces s ULongLongM sg()

<<Interface>>

FloatSeqC onsumer

proces s FloatM sg()

<<Interface>>

DoubleSeqConsumer

proces s DoubleM s g()

<<Interface>>

LongDoubleSeqConsumer

proces s LongDoubleM s g()

<<Interface>>

BooleanSeqConsumer

proces s Boole anM s g()

<<Interface>>

CharSeqConsumer

proces s CharM s g()

<<Inte rface>>

UshortSeqC onsumer

proces s Us hortM s g()

<<Interface >>

StringSeqConsumer

proces s StringM s g()

<<Interface>>

WstringSeqConsumer

proces s W s tringM s g()

<<Interface>>

AnyConsumer

proces sM s g()

<<Interface>>

Figure 3-26. PullPort Data Interfaces

3.2.2 Application Interfaces.

Applications consist of multiple components. Component interfaces, other than CF interfaces,
may be hidden from view by other applications or the CF; they are "wrapped" by components
with visible interfaces. Applications' components' interfaces shall be visible and defined as
described herein if:

1. the component provides a service that is used by more than one application, or

2. the service user requires the interface to be common across service implementations.

3.2.2.1 Utility Applications.

3.2.2.1.1 Installer Utility.

Installer is a generic name given to utility applications used for installing and uninstalling
devices and components within the system. Installers shall use the CF DomainManager,
DeviceManager, and FileManager interfaces for those operations. Installers can reside inside or
outside the system.

Figure 3-27 and figure 3-28 illustrate device and software installations using the CF.

MSRC-5000SCA
rev. 1.0

3-72

client releases of
DomainManager,
DeviceManager, and
FileManager objects

 :
DomainManager

Installer CORBA Naming
Services

 : FileManager :
DeviceManager

Full path name
of XML profile

ORB

copy Device XM L
Profile

getDeviceManagers()

narrow

resolve

mk dir(in s tring)

moun t(in string, in FileSyst em)

copy(in string, in st ring)

unmount(in st ring)

release

release

getFi leManager()

installDevice(in FileSystem, in string)

installDevice(in FileSystem, in string)
set device manager
profile. This is
optional based on
t he DeviceManager
device capabili ty

Figure 3-27. Device Installation Sequence Diagram

MSRC-5000SCA
rev. 1.0

3-73

Installer :
DomainManager

CORBA Naming
Services

 : FileM anager

Full path name
of XML profile

ORB

There are at least 1 to n
adds depending on the
software components
being downloaded

getFi leManage r()

registerA pplication (in string)

narrow

resolve

mkdir(in st ring)

creat e(in str ing)

release

release

client releas es of
DomainManager and
FileManager object
references

a Fi leSystem
within the radio

Figure 3-28. Software Installation Sequence Diagram

3.2.2.2 Service APIs.

Service APIs provide definition and standardization of common functionality and interfaces for
use by SCA applications (e.g. waveforms). Services include Network Services, Security
Services, and I/O Services. Each Service API is defined by a Service Definition and Transfer
Mechanism. The API Supplement to the SCA Specification provides additional details and
requirements for Service APIs.

{The API Supplement to the SCA Specification is currently being developed.}

3.2.2.2.1 Service Definitions.

SCA-compliant Service Definitions consist of APIs, behavior, state, priority and additional
information that provide the contract between the Service Provider and the Service User. IDL is
used to define the interfaces for Service Definitions to foster reuse and interoperability. IDL
provides a method to inherit from multiple interfaces to form a new Service Definition.

3.2.2.2.1.1 Format.

All SCA-compliant Service Definitions shall have their interfaces described in IDL, except as
allowed in 3.2.2.2.1.5.

SCA-compliant Service Definitions shall conform to the Service Definition Description (SDD)
provided in Appendix E, except as allowed in 3.2.2.2.1.5.

MSRC-5000SCA
rev. 1.0

3-74

3.2.2.2.1.2 Service Definition Usage and Creation.

The structure and language requirements of the Service Definitions have been selected to provide
commonality between implementations to foster reuse and portability of applications. To further
these ends, the following methods for use and creation of Service Definitions are presented.

1. Reuse an existing Service Definition: If an existing Service Definition is functionally
identical to the new service’s interface, or the new service can easily be mapped to an
existing Service Definition, the existing Service Definition should be reused.

2. Create a new Service Definition by inheriting an existing Service Definition and then
extending its features and capabilities.

3. Translate the existing interface of the service to IDL to create a new Service
Definition.

4. Create a new Service Definition: If the service being implemented has an interface
that can not be defined by existing Service Definitions, then a new Service Definition
needs to be created using the SDD.

(For these identified methods, it is recommended that the order of preference flow from Item #1
to Item #4.)

New (and extensions to existing) Service Definitions should use the Building Blocks described
in 3.2.2.2.1.6 for interfaces that are common to the new definition.

3.2.2.2.1.3 Service Definition Identification.

Each Service Definition shall be identified by a UUID as defined in section 7.4.

3.2.2.2.1.4 Registration.

Public (i.e. non-proprietary) service interfaces used in SCA-compliant systems shall have their
public Service Definitions and associated UUIDs registered as defined in section 7.4.

Private (i.e. proprietary) service interfaces used in SCA-compliant systems shall have their
private Service Definition UUIDs, with a public description of the API, registered. They are
allowed, but not required, to register their private Service Definitions with the Registration Body.
[Note: it is a requirement for JTRS implementations of the SCA that Service Definitions be
public, as described in the API Supplement to the SCA Specification.]

3.2.2.2.1.5 Existing Service Definitions.

It is not the intent of this document to force creation of new documentation for existing Service
Definitions that have commercial and/or government acceptance. Method 3 in section
3.2.2.2.1.2 allows the reuse of existing Service Definitions that do not have IDL interfaces by
mapping an IDL interface to that Service Definition as shown in figure 3-29.

MSRC-5000SCA
rev. 1.0

3-75

Existing Service Definition

Existing Interface
(not IDL)

IDL Interface

Behavior

Mapping

New Service Definition

Figure 3-29. Reusing an Existing Service Definition Without an IDL Interface

3.2.2.2.1.6 Service Definition Building Blocks.

As a further means to attain reuse and portability, common elements (interfaces with defined
structure, behavior, and IDL) are provided in the API Supplement to the SCA Specification.

3.2.2.2.2 API Transfer Mechanisms.

A Transfer Mechanism provides the communication between a service provider and a service
user that may be co-located or distributed across different processors. Figure 3-30 shows the
standard and alternate transfer mechanism structure for APIs.

MSRC-5000SCA
rev. 1.0

3-76

Object
Request

Semantics

Transfer &
Message

Syntax

Transports

Other
(e.g. STREAMS)

Other

Other
(e.g. TCP/IP)

OMG CORBA

...

CORBA IDL

GIOP

IIOP

(TCP/IP)

Other

(e.g.
shared
RAM)

SCA Standard Transfer
Mechanism

Alternative Transfer
Mechanism (if needed for

performance)

Figure 3-30. Standard and Alternate Transfer Mechanism

3.2.2.2.2.1 Standard Networking Transfer Mechanism.

The standard networking transfer mechanism shall be CORBA except as allowed in 3.2.2.2.2.2.

3.2.2.2.2.2 Alternate Networking Transfer Mechanism.

An alternate networking transfer mechanism is allowed for the following case.

1. Application performance cannot be achieved with the standard transfer mechanism.

When an alternate transfer mechanism is used for real-time control and data flow, the transfer
mechanism for initialization and non-real-time control shall use the standard transfer mechanism
(if those controls can be separated).

When an alternate transfer mechanism is used, the transfer and message syntax of the alternate
transfer mechanism shall be mapped to the IDL of the API Service Definition.

This mapping shall be identified by a UUID (separate from the Service Definition UUID).

MSRC-5000SCA
rev. 1.0

3-77

The description of the alternate transfer mechanism, an analysis supporting the performance need
for the alternate mechanism, the mappings to the Service Definition, and the associated UUIDs
shall be registered as defined in section 7.4.

3.2.2.2.2.2.1 API Instance Behavior.

Irrespective of the transfer mechanism used, all behavior including state transitions and priorities
defined in the service definition shall be obeyed by a API Instance.

3.2.2.2.2.2.2 Alternate Transfer Mechanism Standards.

Transfer mechanisms shall be in accordance with commercial or government standards.

3.2.2.2.2.2.3 Alternate Transfer Mechanism Selection.

In addition to the above, transfer mechanism selection should consider the availability of
supporting products that have wide usage, are available from multiple vendors, and are expected
to have long-term support in the industry.

MSRC-5000SCA
rev. 1.0

3-78

3.3 GENERAL SOFTWARE RULES.

This section identifies those rules and recommendations specific to the Software Architecture
that are not specifically addressed elsewhere in this specification.

3.3.1 Software Development Languages.

3.3.1.1 New Software.

Software developed for an SCA-compliant product shall be developed in a standard higher order
language, except at provided below, for ease in processor portability. The goal of new
development should be to provide SW that is independent from platform and environment
details, ensuring minimal portability issues.

An exception is allowed to this requirement, if there are program performance requirements that
require the use of assembly language programming.

3.3.1.2 Legacy Software.

Legacy software is not required to be rewritten in a standard higher order language. However
legacy SW shall be interfaced to the core framework in accordance with this specification,
through the use of Adapters if necessary.

MSRC-5000SCA
rev. 1.0

4-1

4 HARDWARE ARCHITECTURE DEFINITION
This section describes the methodology of using the SCA as the basis for partitioning the
Hardware (HW) Architecture in terms of an Object-Oriented approach. This Object-Oriented
approach describes a hierarchy of hardware class and subclass objects that represent the
architecture. Characteristics, or attributes, associated with each hierarchical class form the
domain independent basis for the definition of each physical hardware device. Section 4.5
specifies the hardware requirements.

4.1 BASIC APPROACH.

The definition of the HW Architecture consists of a set of HW classes that are common across all
domains. The top-level hardware classes correspond with top-level hardware functions. These
top-level HW classes are further refined into subclasses that correspond with lower-level
hardware functions. The attributes associated with these classes and/or subclasses describe the
individual class or subclass contributions to system features and capabilities.

During implementation, this hardware class structure can be used to describe the hardware
implementation in accordance with procurement specifications. This object-oriented approach
enables a consistent application of the HW architecture (classes and rules) across the various
domains (i.e., Handheld, Dismounted, Vehicular, Airborne, and Maritime/Fixed).

Attributes and the HW class structure will potentially have multiple users over the lifetime of
each hardware module. Initially, when the radio system engineer is designing a radio system,
class attributes provide a place to sort top level requirements, either by direct allocation or by
analysis and allocation. After physical partitioning is performed, the attributes outline HW
module(s) specification(s). The hardware designer, through the module specifications, in effect,
uses the attributes to characterize the design of the modules.

Software applications also become users of HW attributes. The attributes are reported to the
DomainManager through the Device Profiles. As software applications become more
sophisticated, they will become increasingly dependent upon HW attributes, used potentially
both as variables or in software dependency checks in the applications.

4.2 CLASS STRUCTURE.

Class structure is the hierarchy that depicts how object-oriented classes and subclasses are
related. The SCA hardware class structure identifies functional elements that in turn are used in
the creation of physical system elements (HW devices). Using this object-oriented approach,
devices "inherit" from the class structure and share common physical and interface attributes,
thus making it easier to identify and compare device interchangeability. (In this use, the term
“inherit” simply means that attributes at a higher class-level are common with all the subclasses.
In the following figures, this feature is shown by a hollow arrow, the UML symbol for
“generalization”.)

Hardware devices represent physical implementations whose attributes are assigned specific
values. In this sense, the attributes define domain-neutral class objects (abstract classes) and the
values of the class attributes then place specific requirements on the implementation. HW
devices inherit common attributes via the hardware class structure. Devices can then be
developed to satisfy procurement-specific requirements. All hardware devices will have values

MSRC-5000SCA
rev. 1.0

4-2

assigned to the class attributes. (The attributes shown in the figures in this section are
representative of the attributes associated with the respective classes and are provided for
illustrative purposes.)

4.2.1 Top Level Class Structure.

At the system level, hardware conforms to the class structure depicted in figure 4-1 and figure
4-2. The top-level SCA-Compliant Hardware class defines the system procurement-associated
attributes such as maintainability and availability requirements. The Chassis class has unique
physical, interface, platform power and external environment attributes that are related to
external factors rather than individual modules within the chassis. The HWModule(s) class
represents a wide variety of SCA-compliant physical hardware. Subclasses of HWModule(s)
inherit all its attributes, including those shown in figure 4-2. Stereotypes, indicated by enclosure
in double brackets (<<stereotype>>), are included in the class diagrams to better group and
manage attribute labels and titles. The stereotypes are generally associated with particular users
of the attributes.

SCA-Compliant Hardware
Maintainability
Availability

Chassis

NumberOfSlots
FormFactor
BackPlaneType
Environment
PowerRequirements
CoolingRequirements

HW Module(s)

FormFactor
Environment
Power
<<Registration>>
DeviceName

SerialNumber
Manufacturer
<<Programmability>
.<<Performance>>

DeviceClass
ModelNumber

Figure 4-1. Top Level Hardware Class Structure

The Chassis subclass includes the attributes of number of module slots, form factor, back plane
type, platform environmental, power and cooling requirements. The HWModule(s) class is the
parent to all module sub-classes and provides the basic attributes that are inherited by all
hardware modules. As the class structure hierarchy extends from the more general top level
down into the more specific lower levels, each subclass inherits the attributes of all the preceding
hierarchy of classes. Module compatibility can be ascertained by comparing appropriate
instantiated attributes.

MSRC-5000SCA
rev. 1.0

4-3

4.2.2 HWModule(s) Class Structure.

The JTRS concepts of hardware reuse, extendibility and expandability dictate a modular
implementation approach. The hardware architecture presents two very distinct module types.
The first type contains software intensive processing elements (i.e., Digital Signal Processor
(DSP) modules and General Purpose Processor (GPP) cards), while the second type contains
non-programmable functionality (such as RF elements). As programmable capability and
programmable hardware technologies evolve, functionality will migrate from totally embedded
hardware towards more software intensive applications of the hardware functions.

There is a blurring of hardware/software functionality as systems are implemented. Functions
are realized from a combination of both hardware embedded functions and software functions.
Thus the HWModule(s) class framework shown in figure 4-2 includes functional classes that are
strictly programmable in nature (Processor) and others that have embedded functionality. This
provides the framework necessary to construct the elements for a software programmable radio.

HW Module(s)

FormFactor
Environment
Power
<<Registration>>
DeviceName

SerialNumber
Manufacturer
<<Programmability>>
.<<Performance>>

RF

Power Supply

Modem Processor

GPS Reference Standard

INFOSEC I/O

Parent Class

“Inheritance”
Relationship

Child Class

Attribute Stereotype

Attribute

Child Class

DeviceClass
ModelNumber

Figure 4-2. Hardware Module Class Structure

The hardware class structure is expandable through the addition of new classes or through the
addition of new attributes to existing classes to allow for future growth capabilities. Stereotypes,
indicated by enclosure in double brackets (<<stereotype>>), are included in the class diagrams to
better group and manage attribute labels and titles.

In the HW Module class, <<Registration>> attributes are those that become part of a Device
Profile as reported through a Device Package Descriptor file. All other stereotypes indicate

MSRC-5000SCA
rev. 1.0

4-4

attributes that, when reported, become part of the Device Profile as reported through a Property
File.

4.2.3 Class Structure with Extensions.

Each hardware class can be extended further to provide additional attribute granularity. This
methodology provides both a formalized structure for hardware definition and the inherent
flexibility needed to allow for evolving requirements as well as hardware and software
capabilities.

4.2.3.1 RF Class Extension.

The subclasses in figure 4-3 extend the RF class hierarchy. These subclasses relate to the typical
range of RF hardware devices such as, Antennas, Receivers, Exciters, and Power Amplifiers. As
with all HW subclasses, the attributes contained within these RF subclasses attempt to
encapsulate the functionality that can be used to describe the unique mix of features and
capabilities of the associated hardware device.

Cosite performance considerations place a special burden on the RF class. The intelligent
management of cosite performance requires monitoring and control of many of the RF subclass
modules. The hardware architecture supports cosite operation in two ways. First, there is a
cosite sub-class. This encapsulates the hardware that is specifically provided for cosite
operation. Second, a <<CositePerformance>> stereotype groups those attributes useful for a
cosite manager application. Such an application, while not part of the architecture itself, is an
implementation-specific capability to coordinates RF assets.

Antennas have historically been passive elements typically attached to the structure that houses
the communications system. While remaining very domain and platform unique, technology
growth continually improves the capabilities that can be performed in the communications
system 'front end', necessitating the inclusion of antennas in the core of JTRS. "Smart" antennas
include receive, transmit, and cosite mitigating elements, blurring the functional separation lines.
For this reason and because of the key role that antenna systems play in cosite management,
“Antenna” is incorporated in the class structure as an RF subclass.

MSRC-5000SCA
rev. 1.0

4-5

Antenna

VSWR
Gain
BeamSteering
FieldOf View
Polarization
Transmit/Receive
Nulling

Receiver

NoiseFigure
Up/DownConversion
<<Performance>>
Bandwidth
Selectivity
A/DSampleRate
A/DResolution
A/DThreshold
AGC
Equalization
Blanking
<<CositePerformance>>
Spurs
PhaseNoise
<<WaveFormSupport>> .
SupportedWaveforms

Exciter

Distortion
<<Performance>>
CarrierGeneration
D/AConversion
D/AThreshold
D/ASampleRate
AGC
DataConversion
Equalization
PowerControl
<<CositePerformance>>
Spurs
PhaseNoise
WidebandNoiseFloor
<<WaveFormSupport>> .
SupportedWaveforms

Power Amplifier

Distortion
VSWR_Tolerance
InputProtection
DrivePower
OutputLeveling
Gain
OutputProtection
ReceiverConnection
<<Performance>>
PAType
OperationalModes
<<CositePerformance>>
WidebandNoiseFloor
ReverseIM
<<WaveFormSupport>>
SupportedWaveforms

EMP/Lightning Protection

ResponseTime
VoltageLevel
EnergyLevel

Cosite Mitigation

Attenuation
Bandwidth

RF Distribution

Isolation
NumberOfChannels
DiversityCapability

RF

<<Performance>>
FrequencyRange
Channelization
TuningSpeed
PowerLevel
<<CositePerformance>>
DynamicRange

Figure 4-3. RF Class Extension

MSRC-5000SCA
rev. 1.0

4-6

4.2.3.2 Modem Class Extension.

The Modem class shown in figure 4-4 has subclasses that encapsulate the attributes of
modulation and demodulation functions. The Modem class also contains attributes that can be
used to describe the range of signal processing and data conversion capabilities such as spreading
and de-spreading. The <<WaveFormSupport>> stereotype labels the attribute of
SupportedWaveforms. This is an attribute indicating specifically what waveforms the modem is
capable of performing.

Modem

TRANSEC
<<WaveFormSupport>>
SupportedWaveforms
<<Performance>>
DataConversion
DynamicRange
CodingRate
CodingType
Equalization
InterleaveType
InterleaveRate
ModulationType
ModulationRate
SampleRate

Modulator
<<Performance>>
PreModulationFiltering
Multiplexing
Spreading

Demodulator
DiversityCombining
FrequencyTracking
InterferenceExcision
Multipath
<<Performance>>
CarrierSync
SymbolSync
CarrierSense
Despreading
DeMultiplexing

Figure 4-4. Modem Class Extension

MSRC-5000SCA
rev. 1.0

4-7

4.2.3.3 Processor Class Extension.

The Processor class shown in figure 4-5 directly supports software operations by providing the
processors, memory, and supporting functions. Devices derived from this class include General
Purpose Processors, Digital Signal Processors, and extend to modules utilizing programmable
logic devices (FPGAs, etc.). The class captures the attributes of processing devices needed by
the system resources. This Processor class represents the type of hardware that, in itself,
essentially has no unique radio-functional capabilities of its own. Its actual use, or personality, is
a function of the software that is loaded into and executed on it. It can be envisioned that as
processor speeds and software capabilities evolve, this class of hardware will tend to dominate
future radio systems while some of the other hardware specific functions will be replaced by
processors and software. As this happens, the attributes associated with function and
performance will effectively migrate to the software applications that are running on the host
processors.

Processor
<<Programmability>>
Type
ClockSpeed
MemoryCapacity
ProcessingCapability
OperatingSystem

GPP DSP FPGA

Figure 4-5. Processor Class

MSRC-5000SCA
rev. 1.0

4-8

4.2.3.4 INFOSEC Class.

The INFOSEC class provides structure for a hardware device that is described by the type of
cryptographic features it supports and certifications for which it has been qualified. Figure 4-6
lists INFOSEC class attributes.

INFOSEC

Certification
Accreditation
Type
Alarms

Anti-Tamper
Authentication
Bypass Mode
Fill Type
Keys
MLS

Network Security
OTAR

TEMPEST

Validation
Zeroize Capability

Access Control()

Authentication()

Key Management()

Number of Channels

Encrypt/Decrypt

Sense Pattern
Synch/Resynch
Key Management()

COMSEC Type

TRANSEC Type

Algorithms

Access Control

Monitor Access
Monitor Users
Control Data Paths

Type
Method

Figure 4-6. INFOSEC Class

MSRC-5000SCA
rev. 1.0

4-9

4.2.3.5 I/O Class Extension.

The I/O Class shown in figure 4-7 provides representation for general physical connectivity and
is not limited to just user interfaces.

For every hardware device, the critical interfaces are those that are presented to the “outside
world”. The definition of a critical interface is dependent on the class hierarchy level at which
the hardware device is being viewed. For example, if the HW device is a complete radio system,
it inherits attributes from the chassis class and its critical interfaces are defined at the chassis
physical boundary. Additionally, each module within the radio system has critical interfaces
unique to it; and its I/O attributes are inherited from the I/O subclass.

I/O
PinAssignment(s)

Digital Bus
Serial
Parallel
Standard

FanIn/Out
Network

RF I/O
Impedance
VSWR
SignalLevel
Frequency

PhotonicDigital Discrete
LogicType
FanIn/Out

Analog
Impedance
SignalLevel
Bandwidth

Figure 4-7. I/O Class Extension

MSRC-5000SCA
rev. 1.0

4-10

4.2.4 Attribute Composition.

As hardware technology evolves, hardware modules will encompass increased levels of
functionality due to higher levels of integration. This will allow more functional hardware
classes to be realized within individual physical hardware modules. The function of the
individual classes remains the same, but they are physically realized on the same circuit card or
module. UML provides the 'composition' relationship to represent this. An example of this is
shown in figure 4-8, showing a module that provides receive, transmit, and
modulation/demodulation capabilities, and using the hardware class model to illustrate this
fusion of capabilities. The resultant attribute list for the module will be composed of the unique
mix of features encapsulated by the four hardware classes from which it is composed. Since
each of the individual classes inherit attributes from its respective higher level class, the
hardware module also inherits from the higher levels.

<Modulator><Exciter><Receiver>

<Company XYZ Transceiver/Modem>

<Demodulator>

Composition

Figure 4-8. Typcial Hardware Device Description using the SCA HW Class Structure

4.3 DOMAIN CRITERIA.

As communications systems assume multi-band, multi-channel, and multi-mission capabilities, a
dilemma arises. When trying to satisfy the needs of both the small, highly mobile user
(Handheld Domain) and the large command center (Maritime/Fixed Domain), it is evident that
distinctly different mission and platform constraints exist. Offering the same solution for both
extremes is obviously not the optimum – or cost effective – solution for either. The highly-
mobile user requires a compact, environmentally-robust terminal containing embedded message
processing, sized sufficiently to their needs, but not so large as to meet the intensive
filtering/formatting/networking needs of the command center. The command center, on the other
hand, requires environmental robustness only to the inhabited level. There are many, real
barriers to complete commonality - cost being the largest. The most significant hardware cost-
savings potential is the use of COTS standards, technology, and components, where possible.
The SCA provides the standard for use of COTS technology, design reuse across products, and
an open, well-documented architecture allowing multiple contractors to implement an entire
system or only a portion of it.

4.4 PERFORMANCE RELATED ISSUES.

A particular implementation of the SCA can have significant impact on the equipment
performance, especially in the case of complex waveforms and multi-channel radios. The areas

MSRC-5000SCA
rev. 1.0

4-11

of cosite performance and system control timing have been identified as two key performance
areas for careful consideration. Discussions of the cosite effects and mitigation techniques
applicable to the physical implementation of the architecture are in the SRD.

4.5 GENERAL HARDWARE RULES.

Requirements placed on hardware objects by the SCA reflect a balance between the need to
support extendibility and interchangeability, and the support of technology growth and domain
constraints. The result is a limited set of specific rules (listed below) augmented by
implementation guidelines, much of which is in the SRD.

4.5.1 Device Profile.

Each supplied hardware device shall be provided with its associated Domain Profile files as
defined in section 3.1.3.4, Domain Profile. These files shall be in XML, using the format shown
in Appendix D.

4.5.2 Hardware Critical Interfaces.

4.5.2.1 Interface Definition.

Hardware critical interfaces shall be defined in Interface Control Documents that are available to
other parties without restriction. Critical interfaces are those interfaces at the physical boundary
of a replaceable device that are required for the operation and maintenance of the device.

4.5.2.2 Interface Standards.

Hardware critical interfaces shall be in accordance with commercial or government standards,
except as allowed below.

An exception is allowed to this requirement, if there are program performance requirements that
require a non-standard interface. In this case, the interface definition shall be clearly and openly
documented to the extent that interfacing or replacement hardware can be developed by other
parties without restriction.

4.5.2.2.1 Interface Selection.

In addition to the above, interface selection should consider the availability of supporting
products that have wide usage, are available from multiple vendors, and are expected to have
long-term support in the industry.

4.5.3 Form Factor.

The form factor of the hardware objects should be, where practical, in accordance with
commercial standards.

4.5.4 Modularity.

The partitioning of the hardware architecture into modules should be chosen to allow for ease of
upgrade through technology insertion or replacement of modules based on form, fit, and
function. Module boundaries are critical interfaces as defined in 4.5.2.1.

MSRC-5000SCA
rev. 1.0

4-12

MSRC-5000SCA
rev. 1.0

5-1

5 SECURITY ARCHITECTURE DEFINITION
{ This section will contain access control and authentication requirements applicable to the
general SCA. JTRS security definitions and requirements are contained in the Security
Supplement to the SCA Specification.}

MSRC-5000SCA
rev. 1.0

5-2

MSRC-5000SCA
rev. 1.0

6-1

6 COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS

6.1 COMMON SYSTEM SERVICES.

This section will define any common system services that are not part of the CF but are
considered part of the SCA. None have been identified at this time.

6.2 OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

This section will address common interfaces or features necessary to support deployment of
SCA-compliant systems in the field. None have been identified at this time.

MSRC-5000SCA
rev. 1.0

6-2

MSRC-5000SCA
rev. 1.0

7-1

7 ARCHITECTURE COMPLIANCE
This section defines the criteria for certifying candidate system, hardware, and software
application products to this specification.

This specification may be applied to procurement of a multitude of radio products and
communication systems. In addition, this specification may also be applied to hardware-only or
software-only products that would be hosted on SCA-compliant systems.

7.1 CERTIFICATION AUTHORITY.

The JTRS Joint Program Office (JPO) holds the authority to certify that a candidate product
meets the requirements of this specification. This authority may be transferred, in time, to a
general standards body.

7.2 RESPONSIBILITY FOR COMPLIANCE EVALUATION.

The responsibility for performing the evaluation of a candidate product's compliance is TBD.
This body will determine the test methods and procedures used to establish compliance.

7.3 EVALUATING COMPLIANCE.

Compliance to this specification is defined as meeting all requirements, except as specifically
allowed herein. Products submitted as "SCA-Compliant" will be evaluated for compliance in
accordance with the test methods and procedures established per section 7.2.

7.4 REGISTRATION.

Documentation of some elements of an SCA implementation, as defined in sections 3 and 4, will
be submitted to a Registration Body to be established, initially, by the JTRS JPO.

[The establishment, membership, rules, and operation of Registration Bodies are beyond the
scope of the SCA.]

Some elements of an SCA implementation are identified with a UUID. As used in this
specification, the UUID is defined by the DCE UUID standard (adopted by CORBA). (OSF
Distributed Computing Environment, DCE 1.1 Remote Procedure Call) No centralized authority
is required to administer UUIDs (beyond the one that allocates IEEE 802.1 node identifiers
[Medium Access Control (MAC) addresses]).

MSRC-5000SCA
rev. 1.0

7-2

	INTRODUCTION
	SCOPE.
	COMPLIANCE.
	Joint Technical Architecture Compliance.

	DOCUMENT CONVENTIONS, TERMINOLOGY, AND DEFINITIONS.
	Conventions and Terminology.
	Unified Modeling Language.
	Interface Definition Language.
	eXtensible Markup Language.
	Color Coding.
	Requirements Language.
	CF Interface and Operation Identification.

	Definitions.

	DOCUMENT CONTENT.

	OVERVIEW
	ARCHITECTURE DEFINITION METHODOLOGY.
	ARCHITECTURE OVERVIEW.
	Overview - Software Architecture.
	Bus Layer (Board Support Package).
	Network & Serial Interface Services.
	Operating System Layer.
	Core Framework.
	CORBA Middleware.
	Application Layer.
	Applications.
	Adapters.

	Software Radio Functional Concepts.
	Software Reference Model.
	ModemDevice Functionality.
	NetworkResource and LinkResource Functionality.
	I/ODevice Functionality.
	SecurityDevice Functionality.
	UtilityResource Functionality.

	System Control.

	Networking Overview.
	External Networking Protocols.
	SCA Support for External Networking Protocols.

	Overview - Hardware Architecture.

	SOFTWARE ARCHITECTURE DEFINITION
	OPERATING ENVIRONMENT.
	Operating System.
	Middleware & Services.
	CORBA.
	CORBA Extensions.
	Naming Service.
	Quality of Service Control.
	Real-Time.
	Messaging.

	Core Framework.
	Base Application Interfaces.
	Port.
	Description.
	UML.
	Types.
	InvalidPort.
	OccupiedPort.

	Attributes.
	Operations.
	connectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	disconnectPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	LifeCycle.
	Description.
	UML.
	Types.
	InitializeError.
	ReleaseError.

	Attributes.
	Operations.
	initialize.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	TestableObject.
	Description.
	UML.
	Types.
	UnknownTest.

	Attributes.
	Operations.
	runTest.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	PropertySet.
	Description.
	UML.
	Types.
	UnknownProperties.
	InvalidConfiguration.
	PartialConfiguration.

	Attributes.
	Operations.
	configure.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource.
	Description.
	UML.
	Types.
	UnknownPort.
	StartError.
	StopError.

	Attributes.
	Operations.
	stop.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	start.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getPort.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ResourceFactory.
	Description.
	UML.
	Types.
	ResourceNumType.
	InvalidResourceNumber.
	ShutdownFailure.

	Attributes.
	Operations.
	createResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	releaseResource.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	shutdown.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Framework Control Interfaces.
	Application.
	Description.
	UML.
	Types.
	Attributes.
	profile.
	name.

	General Class Behavior.
	Operations.
	releaseObject.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	ApplicationFactory.
	Description
	UML.
	Types.
	DeviceAssignmentType.
	DeviceAssignmentSequence.
	exception CreateApplicationRequestError.
	exception CreateApplicationError.

	Attributes.
	name.
	SoftwareProfile.

	Operations.
	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	DomainManager.
	Description.
	UML.
	Types.
	exception ApplicationInstallationError.
	InvalidIdentifier.
	DeviceManagerSequence.
	ApplicationSequence.
	ApplicationFactorySequence.

	Attributes.
	deviceManagers.
	applications.
	applicationFactories.
	fileMgr.

	General Class Behavior.
	Operations.
	registerDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	installApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDeviceManager.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	uninstallApplication.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Device.
	Description.
	UML.
	Types.
	InvalidProcess Exception.
	InvalidFunction Exception.
	DeviceNotCapable Exception.
	InvalidCapacity Exception.
	CapacityExceeded Exception.
	AdminType.
	OperationalType.
	UsageType.
	ProcessID_Type.
	LoadType.

	Attributes.
	UsageState.
	AdminState.
	OperationalState.
	Identifier.
	SoftwareProfile.
	Label.
	ParentDevice.
	Devices.

	Operations.
	terminate.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	execute.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	load.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unload.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	allocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	deallocateCapacity.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	addDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	removeDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	executeProcess.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource Operations.

	DeviceManager.
	Description.
	UML.
	Types.
	Attributes.
	Log.
	FileMgr.
	DeviceManagerProfile.

	General Behavior.
	Operations.
	installDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	addDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	removeDevice.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Resource Operations.

	Framework Services Interfaces.
	File.
	Description.
	UML.
	Types.
	IOException.
	InvalidFilePointer.

	Attributes.
	FileName.
	FilePointer.

	Operations.
	read.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	write.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	sizeOf.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	close.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setFilePointer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileSystem.
	Description.
	UML.
	Types.
	UnknownFileSystemProperties.

	Attributes.
	Operations.
	remove.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	copy.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	exists.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	list.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	create.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	open.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	mkdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	rmdir.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	FileManager.
	Description.
	UML.
	Types.
	MountType.
	MountSequence.
	FileSystemPropertyType.
	FileSystemPropertySequence.
	NonExistentMount.
	MountPointAlreadyExists.
	InvalidFileSystem.

	Attributes.
	Operations.
	mount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unmount.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getMounts.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	File System Operations.
	query.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	StringConsumer.
	Description.
	UML.
	Types.
	Attributes.
	Operations.
	processString.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.

	Logger.
	Description.
	UML.
	Types.
	NameNotFound Exception.
	MATCH_ALL_NAMES.
	Producer Log Level Type.
	Producer Log Levels.

	Attributes.
	Operations.
	logData.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setLoggingState.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setProducerLogLevel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	setConsumerLogLevel.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getLogs.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerConsumer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	registerProducer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterConsumer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	unregisterProducer.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getProducerLogLevels.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	getConsumerLogLevels.
	Brief Rationale.
	Synopsis.
	Behavior.
	Returns.
	Exceptions/Errors.

	Timer.

	Domain Profile.
	Software Package Descriptor.
	Software Component Descriptor.
	Software Assembly Descriptor.
	Property File.
	Device Package Descriptor File.
	Device Assembly Descriptor.

	APPLICATIONS.
	General Application Requirements.
	OS Services.
	CORBA Services.
	CF Interfaces.
	CF Interface Extensions.

	Application Interfaces.
	Utility Applications.
	Installer Utility.

	Service APIs.
	Service Definitions.
	Format.
	Service Definition Usage and Creation.
	Service Definition Identification.
	Registration.
	Existing Service Definitions.
	Service Definition Building Blocks.

	API Transfer Mechanisms.
	Standard Networking Transfer Mechanism.
	Alternate Networking Transfer Mechanism.
	API Instance Behavior.
	Alternate Transfer Mechanism Standards.
	Alternate Transfer Mechanism Selection.

	In addition to the above, transfer mechanism selection should consider the availability of supporting products that have wide usage, are available from multiple vendors, and are expected to have long-term support in the industry.�GENERAL SOFTWARE RULES.
	Software Development Languages.
	New Software.
	Legacy Software.

	H

	HARDWARE ARCHITECTURE DEFINITION
	BASIC APPROACH.
	CLASS STRUCTURE.
	Top Level Class Structure.
	HWModule(s) Class Structure.
	Class Structure with Extensions.
	RF Class Extension.
	Modem Class Extension.
	Processor Class Extension.
	INFOSEC Class.
	I/O Class Extension.

	Attribute Composition.

	DOMAIN CRITERIA.
	PERFORMANCE RELATED ISSUES.
	GENERAL HARDWARE RULES.
	Device Profile.
	Hardware Critical Interfaces.
	Interface Definition.
	Interface Standards.
	Interface Selection.

	Form Factor.
	Modularity.

	SECURITY ARCHITECTURE DEFINITION
	COMMON SERVICES AND DEPLOYMENT CONSIDERATIONS
	COMMON SYSTEM SERVICES.
	OPERATIONAL AND DEPLOYMENT CONSIDERATIONS.

	ARCHITECTURE COMPLIANCE
	CERTIFICATION AUTHORITY.
	RESPONSIBILITY FOR COMPLIANCE EVALUATION.
	EVALUATING COMPLIANCE.
	REGISTRATION.

